V. VNMR to Bruker-AM/AC Parameter Conversion Table

[comments apply to VNMR unless specifically mentioned otherwise]

Parameter	AM/AC	VNMR	Comments
Experiments			
standard 1d ^{I}H	ZG	go / s2pul	go zeros memory, and starts acquisition; seqfil='s2pul'
homonuclear decoupling	HOMODEC.AU	s2pul homo='y'	set the cursor on the peak and use sd to get the decoupler frequency
1d NOE difference	NOEDIFF.AU	s2pul homo='y' dm='yyn'	array can be used to run multiple decoupler frequencies in one exp.
standard 1d decoupled $X^{/13}C$	CPD ZG	s2pul dm='yyy'	
NOE-enhanced coupled ^{13}C	GATEDEC.AU	s2pul dm='yyn'	DEPT is preferred unless you need quat's
quantitative decoupled ¹³ C	INVGATE.AU	s2pul dm='nny'	X nucleus T_I 's can be quite long, so this experiment can be arduous
DEPT ¹³ C editing	DEPT.AU	dept	mult=0.5; 1; 1.5 produces dept45; 90; 135 respectively
homonuclear correlation 2d	COSY.AU	cosy	gcosy is the better experiment; sw/(ni*2) gives usable digital resolution; usually need ≤ 6 Hz/pt
long-range cosy	COSYLR.AU	cosy tau≠0	gcosy is the better experiment
double quantum cosy	DQCOSY.AU	dqfcosy	DQCOSY; complete phase cycling is crucial for the dq filter; nt = multiple of 8
phase sensitive noesy	NOESYPH.AU	noesy	NOESY: flat baselines are important for observing small noe's; use calfa
phase sensitive roesy	ROESYPH.AU	roesy	ROESY; flat baselines are important for observing small noe's; use calfa
total	???	tocsy	TOCSY or TOCSY1D; useful for mixtures or separated spin
correlation/WOHAHA			systems
heteronuclear correlation	XHCORR.AU	hetcor	use only if need very high ¹³ C resolution
inverse hetero correlation	???	hmqc	gHMBCAD preferred
multiple bond hetero correl.	???	hmqc bond≠0	HSQCAD; important experiment for observing through linkage bonding

Read and Save Commands			
read data file	RE filen.ame	rt('filename')	in VNMR, use also MAIN MENU FILE click on filename and
			LOAD
save data file	WR filen.ame	<pre>svf('filename')</pre>	in VNMR, no menu selections for this
read parameter file	RJ filen.ame	rtp('filename')	in VNMR, use also MAIN MENU SETUP NUC, SOLV
save parameter file	WJ filen.ame	<pre>svp('filename')</pre>	
read shim file	RSH filen.ame	rts('filename')	in VNMR, will search ~/vnmrsys/shims and /vnmr/shims
			paths
save shim file	WSH filen.ame	svs('filename')	in VNMR, will save to ~/vnmrsys/shims
load shim file	none needed	loadshims	loadshims is UW-written macro having load='y' su load='n'
			su

1d Acquisition Commands					
tune ¹ H observe	RJ H1.SET	UWmacro	tuneh is a UW-written macro		
		TuneH1			
tune ¹³ C channel	RJ C13.SET	UWmacro	tunec is a UW-written macro		
		TuneC13			
setup 1H for CDC13	RJ CDCL3.1DJ	use menus	in VNMR, use MAIN MENU SETUP NUC, SOLV		
zero and go	ZG	go or ga	ga will automatically apply a wft after acquisition		
automation run	AU autom.nam	au	all VNMR programs run from compiled routines		
halt acquisition with data	^ H	sa	in VNMR, svf can be issued during acquisition to save data		
resume acquisition	GO	ra	seems to work only for 1d (unless the 2d or 3d has been		
			modified); vnmr's ra follows an sa that stops acq.		
abort acquisition	^ E or ^K	aa	in VNMR, data is retained and ok		
automation setup	AS auton.ame	none (try dps)	in VNMR, only parameters used in experiment will be shown		
1d Acquisition Parameters	1d Acquisition Parameters				
sweep width	SW	sw			
center or offset frequency	01	tof			
center decoupler freq	O2	dof			
solvent	none (change O1	solvent='cdcl3'	with solvent set correctly in VNMR, tof=0 will center spectrum		
	thru jobfile)		for normal organic compounds		

set spectrum window	EP set window ^O	set cursors movesw	changes SW , O1 → sw , tof ; on Brukers, AQ will change, whereas in VNMR, np will change (leaving at unchanged)
set offset frequency	EP set cursor O1	set cursor movetof	changes $O1 \rightarrow tof$
relaxation delay	RD or D1	d1	AM/AC delay differs depending on ZG or AU to run experiment
common pulse width	PW	pw	90° length fixed by probe on AM/AC's; depends also on pw90 and tpwr in VNMR
acquisition time	AQ (=TD*DW)	at (=np/sw)	
dwell time	DW (=1/(2*SW)	= 1/sw	Bruker acquires complex pairs sequentially, vnmr simultaneously
# of transients to acquire	NS	nt	Bruker NS -1 which goes continuously → vnmr nt=1e6
# transients before acquis.	DS	SS	
receiver gain	RG (larger # → larger gain)	gain (larger # → larger gain)	on Unity, if gain=0 still clips (get ADC OVERFLOW message), insert attenuator at preamp output
observe transmitter power	none	tpwr=52 (higher # → higher power)	AM/AC's observe power is fixed; Unity's have linear amplifiers on both observe and decouple
number of points acquired	TD (usually = SI)	np	
temperature	TE	temp=24	see temp24 and similar macros (written at UW)
decoupler transmitter	DP <ret>20H</ret>	dpwr=40 (lower #	vnmr parameters are logical
power	(lower # \rightarrow	\rightarrow lower	
	higher power)	power)	

1d Processing Commands and Parameters			
fourier transform	FT	ft	
number of points FT'd	SI	fn	zero-filling occurs here (e.g., np=1024, fn=2048 will zero-fill
			once)
line broadening parameter	LB	lb	
interactively set weighting	none	wtia or wti	in vnmr, middle button still control intensity in all windows; left
parameters			button sets parameter
apply exponential line	EF	wft or dsx	in vnmr, wft applies whatever weighting function is setup; dsx
broad.			is a UW macro, and simply adds a dscale(0) after the FT

set reference	EP set cursor G	set cursor nl rl(0p)	vnmr gives example for TMS	
automatic phasing	AZPK??	aph	in vnmr, lp should ~ 0, otherwise advise calfa command and/or back-linear prediction	
baseline correction	EP K	dc or bs(5)	in vnmr, bs is <i>not</i> recommended for 1d (default spline fit), but is very good for 2d work-ups (recommended there)	
normalized intensities	AI <ret>0</ret>	nm	in vnmr, vs=100 will fill screen	
absolute intensities	AI <ret>1</ret>	ai		
1d Plotting Commands				
plot spectrum	PX	pl		
plot parameters	in DPO setup	ppa or pap		
plot axis	in DPO setup	pscale	in vnmr, axis='p' sets axis to ppm	
plot coordinates	X0, Y0	sc, vp	sc is mm from right side, vp is mm vertically up from bottom	
plot size	CX, CY	wc, vs	we is mm width of chart, vs is vertical scale	
plot integrals	PXD???	pirn		
plot peak picks	in DPO setup	dll or ppf	<pre>printon dll printoff prints table to separate page (do before any plotting commands); ppf plots on spectrum</pre>	
new page	NP	page		

2d Acquisition Parameter	S				
sweep width for F1	SW1	sw1	AC/AM SW1 is 1/2 of observed sweep width; vnmr sw1 = observed sweep width		
# increments/experiments	IN	ni	in vnmr, phase determines total # experiment = $1 \times$ or $2 \times$ ni		
type of 2d acquisition	MC2	phase	AC/AM: only absolute value and TPPI are available in software		
			vnmr: absolute value \rightarrow phase=0		
			States-Habercorn \rightarrow phase=1,2		
			TPPI \rightarrow phase=3		
2d setup	ST2D	none	in vnmr, type in sequence macro then dps		
total time of experiment	none	time			
interleaved acquisition	depends on routine	il='y'	in vnmr, acquire bs scans per increment, loop until nt completed		
2d Processing Commands	and Parameters				
FT size in F1	SI1	fn1	AC/AM square requires SI1=SI/2=SI2/2		
reference in F1	SR1	set cursor, rl1(0p)			
FT and weight full set	XFB	wft2da	in vnmr, for absolute value sets use do2d or wft2d		
FT and weight t ₂	XF1	wft1da	counter-intuitive commands, but mean 1st transform		
dimension					
interactive weighting	none	wtia	can be done on t_2 fid, e.g., wft(1) wtia , and on t_1 fid, e.g.,		
			wft1da TRACE wtia		
display color map	EP2D or AP2D	dconi			
2d Plotting Commands	2d Plotting Commands				
plot contours	CPL	pcon	in vnmr, see also pconpos and pconneg , UW written macros		
plot size	CX, CY	wc, wc2	in vnmr, sc still controls distance in mm from right-hand side		
Plot 2d using high res 1d		plot2dhr	have 1d high res already worked up in separate exp, follow		
			prompts		
peak picking and volumes	none	ll2d			