Chemistry 329: Fundamentals of Analytical Science
SYLLABUS

Course Description
Fundamentals of chemical measurement in chemistry, biology, engineering, geology, and the medical sciences. Topics include equilibria of complex systems, spectroscopy, electrochemistry, separations, and quantitative laboratory technique. For chemistry majors, chemical engineering majors, and related majors. Lecture, lab, and discussion.

Course Credit: CHEM 329 is a 4-credit class that meets each week for two 50-minute lectures, one 50-minute discussion, and two 4-hour laboratories. Over the course of the semester, students are expected to do at least 180 hours of learning activities, which includes class attendance, reading, studying, preparation, problem sets, laboratory reports, and other learning activities.

Course Designations: Intermediate level; physical science breadth; counts as L&S credit.

Instructional Mode: Face-to-face

Requisites
CHEM 104 or CHEM 109.

Lecture time: MW 11:00-11:50 AM
Lab time: MW (or F, Section 615) 1:20 -5:25 PM
Disc time: F MW 8:50-9:40 AM

Lecture location: Chem B371
Lab location: MSC 5360 & 5385
Disc location: Chem B383, B379, B387, 2385, 2381 (depending on your section assignment)

Instructor:
Prof. Song Jin
office: Chem 3363
phone: 2-1562
e-mail: jin@chem.wisc.edu (Please include “Chem 329” in the subject line.)
Office hours: W 12:00 – 1 PM
F 12 – 1 PM
or by appt. (Chem 3363)
Course webpage: https://learnuw.wisc.edu

Teaching Assistants:
TA Office hours listed on the course Moodle page.
Section 311/611 Yuzhou Zhao yzhao277@wisc.edu
Section 312/612 Matthew Griffin mjgriffin4@wisc.edu
Section 313/613 Dongxu Pan dpan32@wisc.edu
Section 314/614 Matt Hautzinger hautzinger@wisc.edu
Section 315/615 Yumin Lian ylian4@wisc.edu

Textbook: Harris, Daniel C. “Quantitative Chemical Analysis” 9th Ed.
Other Required Material: Lab manual (available in the Mills Street lobby of Chemistry building), Bound laboratory notebook with carbon copy, safety goggles, a USB or flash drive, and a lab coat.

Learning Objectives for Chem 329:
Students will be able to
a) Apply the statistical methods for the evaluation of laboratory data
b) Use calibration and sampling methods important to quantitative analysis
c) Model chemical systems and experimental data using relevant quantitative, mathematical, and computational methods.
d) Learn analytical methods based on titrations, separations, electrochemical measurements, and spectroscopy and interpret the results for chemical analysis
e) Identify, formulate, and solve integrative problems using appropriate information and approaches.
f) Develop skills in working collaboratively with others, both chemists and those from other disciplines, to solve problems and create new knowledge.
g) Communicate chemical knowledge effectively through written reports, oral presentations, and visual aids.
h) Locate, evaluate, and use information in the chemical literature.

Grades:
The point distribution is as follows:

Exams: 3 exams 54%
Homework: 8 assignments 8%
Laboratory: total 38%
 12 labs 12 X 1.4%
 12 pre-lab quizzes 12 X 0.5%
 1 project 12%
 lab exit survey 0.5%
 TA evaluation 2.7%

Total: 100%

The intended grading scale is:
A 90-100%
A/B 84-89.9%
B 79-83.9%
B/C 74-78.9%
C 68-73.9%
D 60-67.9%
F <60%

However, the scale may be shifted to reflect overall class performance. You will be updated changes to the scale twice during the semester.

Exams:
There will be three exams this semester. The exams are not cumulative; however, most of the material is inherently pedagogical. Therefore, in general you must have a firm understanding of previous material in order to fully comprehend new material. If you have conflicts, please arrange makeup exam sessions with your TA in advance.

Exam I: October 15, Monday 3-5:00 PM (7th week)
Exam II: November 19, Monday 3-5:00 PM (12th week)
Exam III (*Final Exam*): December 18, Tuesday, 12:25-2:25 PM
Homework:
You may work on these assignments as a group, but you must turn in your own homework. Be sure to note that the homework assignments directly reflect exam material. If you cannot work out the problems yourself after the completion of the homework, you will not gain the **proficiency** required to solve the problems on the exams within the timeframe of the exams. **Homework will be usually due on Mondays at the beginning of lab sessions. No late assignments are accepted. This is a strict deadline.**

Course Outline:
The tentative course schedule is as follows:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topics</th>
<th>Book Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Sept 5 -Wed)</td>
<td>Intro</td>
<td>0, 1</td>
</tr>
<tr>
<td>2 (Sept 10)</td>
<td>Units, Errors</td>
<td>3, 4</td>
</tr>
<tr>
<td>3 (Sept 17)</td>
<td>Statistics</td>
<td>4</td>
</tr>
<tr>
<td>4 (Sept 24)</td>
<td>Spectrophotometry</td>
<td>18, 19</td>
</tr>
<tr>
<td>5 (Oct 1)</td>
<td>Spectrophotometry, Equilibria</td>
<td>20, 6</td>
</tr>
<tr>
<td>6 (Oct 8)</td>
<td>Acid-base</td>
<td>8, 9</td>
</tr>
<tr>
<td>7 (Oct 15) (Exam I)</td>
<td>Acid-Base</td>
<td>9, 10</td>
</tr>
<tr>
<td>8 (Oct 22)</td>
<td>Acid-base, titrations, Project Intro</td>
<td>7, 11</td>
</tr>
<tr>
<td>10 (Oct 29)</td>
<td>Titrations, Systematic treatment</td>
<td>11, 8</td>
</tr>
<tr>
<td>11 (Nov 5)</td>
<td>Activity, EDTA</td>
<td>13, 12</td>
</tr>
<tr>
<td>12 (Nov 12)</td>
<td>Redox, Electrochemistry</td>
<td>14</td>
</tr>
<tr>
<td>13 (Nov 19) (Exam II)</td>
<td>Electrochemistry</td>
<td>15</td>
</tr>
<tr>
<td>14 (Nov 26)</td>
<td>Electrochemistry, Chromatography</td>
<td>15, 23</td>
</tr>
<tr>
<td>15 (Dec 3)</td>
<td>Chromatography</td>
<td>24</td>
</tr>
<tr>
<td>16 (Dec 10)</td>
<td>Chromatography, Review</td>
<td>24, 25</td>
</tr>
</tbody>
</table>

This schedule will change as we go along, depending on how we do in these lectures. You should also note that textbook chapters 0, 2, and 27 are devoted to analytical laboratory practices. Although you will not be directly tested on these chapters, you may find information in these chapters that will boost your performance in the laboratory.

ACADEMIC INTEGRITY
By enrolling in this course, each student assumes the responsibilities of an active participant in UW-Madison’s community of scholars in which everyone’s academic work and behavior are held to the highest academic integrity standards. Academic misconduct compromises the integrity of the university. Cheating, fabrication, plagiarism, unauthorized collaboration, and helping others commit these acts are examples of academic misconduct, which can result in disciplinary action. This includes but is not limited to failure on the assignment/course, disciplinary probation, or suspension. Substantial or repeated cases of misconduct will be forwarded to the Office of Student Conduct & Community Standards for additional review. For more information, refer to studentconduct.wiscweb.wisc.edu/academic-integrity/.
ACCOMMODATIONS FOR STUDENTS WITH DISABILITIES

McBurney Disability Resource Center syllabus statement: “The University of Wisconsin-Madison supports the right of all enrolled students to a full and equal educational opportunity. The Americans with Disabilities Act (ADA), Wisconsin State Statute (36.12), and UW-Madison policy (Faculty Document 1071) require that students with disabilities be reasonably accommodated in instruction and campus life. Reasonable accommodations for students with disabilities is a shared faculty and student responsibility. Students are expected to inform faculty [me] of their need for instructional accommodations by the end of the third week of the semester, or as soon as possible after a disability has been incurred or recognized. Faculty [I], will work either directly with the student [you] or in coordination with the McBurney Center to identify and provide reasonable instructional accommodations. Disability information, including instructional accommodations as part of a student's educational record, is confidential and protected under FERPA.”

DIVERSITY & INCLUSION

Institutional statement on diversity: “Diversity is a source of strength, creativity, and innovation for UW-Madison. We value the contributions of each person and respect the profound ways their identity, culture, background, experience, status, abilities, and opinion enrich the university community. We commit ourselves to the pursuit of excellence in teaching, research, outreach, and diversity as inextricably linked goals.

The University of Wisconsin-Madison fulfills its public mission by creating a welcoming and inclusive community for people from every background – people who as students, faculty, and staff serve Wisconsin and the world.” https://diversity.wisc.edu/
The laboratory grade is divided into three main categories: standard experiments, lab quizzes, and project.

- There will be 12 graded standard experiments, and your grade will be based on the accuracy and precision of your results. **The results from these experiments are to be turned in no later than the start of the laboratory period following the completion of the experiment.** You will lose 4 pts/day if the result is turned in late.
- The primary goal of the pre-lab quizzes is to prompt you to prepare for the labs beforehand and to test your knowledge and understanding of the concepts behind the standard experiments. Overall, being “prepared” for a lab means you are familiar with the: overall concepts and goals of the experiment, methods used in the experiment to accomplish the goals, procedure (enough so that you understand the impact of each step on the chemistry and the calculations, e.g. dilutions, stoichiometry, etc), and calculations (enough so that you understand how to perform the calculation required for the experiment given a set of raw data). You can have two attempts at each quiz, the higher grade will be the final grade. It is advised that you make your first attempt for each quiz at least 1 day before the lab so that you have time to ask questions before your second attempt, in case you encounter any difficulties. **The quiz for each lab becomes unavailable when that lab starts.**
- The lab project could be the most challenging and also most rewarding part of this course. We will discuss the project in more details as we go into the semester.

Lab Schedule for Chem 329 Fall 2018 (Jin)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>611 Yuzhou Zhao</th>
<th>612 Matthew Griffin</th>
<th>613 Donxu Pan</th>
<th>614 Matt Hautzinger</th>
<th>615 Yumin Lian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-Sep</td>
<td>Check-in/Weighing</td>
<td>Check-in/Weighing</td>
<td>Check-in/Weighing</td>
<td>Check-in/Weighing</td>
<td>Labor Day--no lab</td>
</tr>
<tr>
<td>2</td>
<td>10-Sep</td>
<td>Volumetric Apparatus</td>
<td>Volumetric Apparatus</td>
<td>Volumetric Apparatus</td>
<td>Volumetric Apparatus</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>3</td>
<td>24-Sep</td>
<td>Spectrophotometric Det. of Fe</td>
<td>Spectrophotometric Det. of Fe</td>
<td>Spectrophotometric Det. of Fe</td>
<td>Spectrophotometric Det. of Fe</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>4</td>
<td>1-Oct</td>
<td>A Study of Fluorescein</td>
<td>Chemical Oxygen Demand</td>
<td>A Study of Fluorescein</td>
<td>Chemical Oxygen Demand</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>5</td>
<td>8-Oct</td>
<td>Adventures with Buffers</td>
<td>Adventures with Buffers</td>
<td>Adventures with Buffers</td>
<td>Adventures with Buffers</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>7</td>
<td>17-Oct</td>
<td>Project continued</td>
<td>Project continued</td>
<td>Project continued</td>
<td>Project continued</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>8</td>
<td>22-Oct</td>
<td>ID of an Unknown Weak Acid</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>9</td>
<td>29-Oct</td>
<td>Bromocresol Green</td>
<td>Bromocresol Green</td>
<td>Bromocresol Green</td>
<td>Bromocresol Green</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>10</td>
<td>5-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>11</td>
<td>12-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>12</td>
<td>19-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>13</td>
<td>26-Nov</td>
<td>Finish labs</td>
<td>Finish labs</td>
<td>Finish labs</td>
<td>Finish labs</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>14</td>
<td>3-Dec</td>
<td>Fluoride ISE</td>
<td>Chromatography</td>
<td>Fluoride ISE</td>
<td>Ag Electrode</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>15</td>
<td>10-Dec</td>
<td>Project Presentation</td>
<td>Project Presentation</td>
<td>Project Presentation</td>
<td>Project Presentation</td>
<td>Check-in/Weighing</td>
</tr>
<tr>
<td>16</td>
<td>12-Dec</td>
<td>Chromatography</td>
<td>Fluoride ISE</td>
<td>Ag Electrode</td>
<td>Chromatography</td>
<td>Check-in/Weighing</td>
</tr>
</tbody>
</table>

Exam 1 is on 9/26, Exam 2 is on 11/14.