Nanometer-sized thin films of small organic molecules are widely used in applications ranging from organic photovoltaics and organic light emitting diodes, to protective coatings and high resolution nano-imprint lithography. Physical vapor deposition (PVD) is commonly used in manufacturing of ultra-thin layers of amorphous organic solids, with an underlying assumption that the properties of these layers are bulk-like. Here, we demonstrate that films of organic glass-formers with thicknesses of 30 nm or less have dynamics significantly enhanced relative to the bulk at temperatures well below the glass transition temperature, Tg. Furthermore, a sharp glass to liquid transition is observed when the thickness of the layer is reduced from 40nm to 20nm. While these measurements are important for a host of applications, they can also help elucidate the fundamental mechanisms responsible for glass transition, a question that has attracted numerous theories in the past half century. Specifically, we are able to show that glassy systems have long-range correlated dynamics that can well exceed their inter-molecular interaction range.