PChem Ph.D. Guidelines for Physical Chemistry Students at UW-Madison

This document summarizes, with an informal chronological overview, the requirements and expectations for physical chemistry students seeking a Ph.D. in Chemistry. It provides both general advice and detailed instructions, and is helpful to first-year students as well as to advanced students. Please send corrections and suggestions to the Physical Chemistry path chair.

Ph.D. Timeline

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Year</th>
<th>Third Year</th>
<th>Fourth Year</th>
<th>Fifth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin Coursework</td>
<td>TBE</td>
<td>RP</td>
<td>Fourth Year Meeting</td>
<td>PhD Dissertation</td>
</tr>
<tr>
<td>Select Research Group, Start Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

During the First Year...

Fall Semester

- Talks describing chemistry research in various groups are given by shortly before the beginning of the 1st semester. You should register for 8 credits of Chem. 992 and attend these talks.

- After these research talks, you should start thinking about choosing a major professor. To help you in this process, you are required to do three rotations in different research groups, and to interview at least five prospective major professors. Upon completion of rotations, you will submit your top three (3) choices for research groups (option to pick five) in a ranked order via the Research Group Selection Form. To learn more about rotations and group selection process please follow this link Choosing a Research Group.

- After a research group has been selected, you will become involved with the activities of the group and, as soon as feasible, begin research.

- You are expected to complete the graduate courses Chem. 661 (Chemical and Statistical Thermodynamics) and Chem. 675 (Introductory Quantum Chemistry) in your first semester.

- In the fall of the first year you are expected to register for Chem. 960 for zero credits and attend the weekly physical chemistry seminars on Tuesdays at 11am.

Wednesday, March 21, 2018
• All first year chemistry graduate students are expected to take Chem. 901 for one credit (Seminar: Teaching of Chemistry). This one-credit course will provide information about our graduate program, teaching, choosing an advisor, and future employment. Note, this course does not count towards the PhD requirements.

• You are encouraged to attend the Student-Run Physical Chemistry Seminars on Tuesday afternoons. In subsequent years, you may present your research in this seminar series.

Spring Semester

• All chemistry graduate students are required to take the department’s Laboratory Safety Course (Chem. 607) during their first year. Register for this one credit course which meets during the week preceding the beginning of the spring semester.

• You are expected to enroll in Chem. 960 (Physical Chemistry Seminar) for two-credits (not zero). Note that the 2-credit spring-semester edition of Chem 960 is an actual course on how to become an effective oral speaker. This course is not limited to attending the physical chemistry seminars, as it also comprises two separate class meetings/week.

• You will begin taking additional courses, which are chosen in consultation with your major professor. A total of 10 credits of graduate coursework in physical chemistry (see Appendix 1) is required for a Ph.D. for students in the physical chemistry path. In addition, you must satisfy the minor requirement of the graduate school by taking a minimum of 9 graduate credits (some of which can be in physical chemistry) in courses outside of your specialized field. Physical chemistry core courses outside of your specialized field may count for credit for the minor requirement and the physical chemistry course requirement, upon approval by your major professor. Chem. 661 and Chem. 675 may not both be counted in this way. Additionally, Chem 960 can only be counted as a core course.

In choosing courses, please note that Chem. 661 (3 credits), Chem. 675 (3 credits), and Chem. 960 (2 credits) add up to 8 credits, leaving a minimum requirement of 2 additional credits in a physical chemistry course. Chem 901, Chem 607 and research credits do not count toward fulfilling the physical chemistry coursework requirement or the minor requirement.

• Registration for the research course Chem 992 is appropriate in the second and succeeding semesters under the section number for your advisor. You should register for enough research credits to bring the total credit load to 15 as a non-dissertator for the fall and spring semesters and to 2 credits in the summer.

• Students whose major professor has a primary affiliation within the physical chemistry path should enroll in Chem 964 (Physical Chemistry Group Meetings, now called “Seminar: Molecular Dynamics”) for 1 credit each semester during their graduate career.) Use the appropriate section for your Advisor.
During the **Second Year** …

- You will continue taking physical chemistry and other courses, chosen in consultation with your major professor.

- Midway through your coursework (typically during your second year) you need to fill out the Minor Agreement form **Minor Agreement Form**. The purpose of the minor agreement form is to add breadth to a PhD major. Instructions are clearly provided on the form.

- Research continues. In collaboration with your major professor, you should prepare and submit manuscripts for publication as appropriate.

- In the second semester of your second year, you will take a **Thesis Background Exam (TBE)**. This TBE involves a written summary (length depends on your research group: consult with your research advisor) given to the committee three days before the exam and an oral presentation (approximately 20 minutes) with subsequent questions from a faculty committee. The purpose of the exam is to assess your preparation for research, including the goals, techniques, and background for the problem to be addressed. Preliminary research results are not required, but should be included if available. The committee assigns a grade on a scale of 1 to 5 for the TBE. Students who receive a grade of 3 or lower may be assigned follow-up work or asked to repeat the exam. More details are provided Appendix 2 at the end of this document.

 Note: *Please hand deliver your summary to the committee three days prior to the exam and state the day, time, and location of the oral presentation on the front page. Remind your committee of this information when you hand them your document and one day in advance of the TBE exam.*

- You should bring a copy of the **Thesis Background Exam Report** to the exam.

- The TBE committee will normally also serve as your mentoring committee (or “thesis committee”) throughout your graduate career. The committee consists of your major professor and two other faculty members, chosen with input from you. One member of the committee may be from outside the chemistry department. Your major professor cannot serve as chair of your committee.

- The mentoring committee will evaluate your progress through formal and informal meetings and help guide you through graduate school. The section below, titled ‘The Ph.D. Program in Chemistry’ provides a summary of topics that the committee may discuss with you over your career. We encourage you to consider your committee as a resource to turn to in case any concerns or issues arise during your graduate work that you would like to discuss with faculty other than your major professor.

During the **Third Year** …

- Research continues. In collaboration with your major professor, you should prepare and
submit manuscripts for publication as appropriate.

- Some specialized courses are not offered every year, and thus it may be appropriate for you to take courses in the third year or beyond.

- In the spring of your third year, you will prepare and present an original Research Proposal (RP). The RP should involve original research in an area not closely related to your Ph.D. research. The proposal should establish that the proposed research will be of interest and that it is feasible. When your major professor approves the topic, a written proposal (format depends on your research group) and an abstract are prepared. The final step of a successful RP involves a closed oral presentation of 25 minutes or less. The evaluation committee may be the same as your mentor committee, or you may choose other faculty members closer to the area of the RP. Consult the Path Coordinator, Cheri Stephens, concerning rules and procedures for scheduling RPs. Three weeks before the RP use the link to complete the form Preliminary Warrant Request Form to Become a Dissertator to request a warrant from the Graduate School to become a dissertator. Instructions are clearly provided on the form. Once completed submit the form online to Arrietta Clauss Graduate Student Services Coordinator for processing with the Graduate School. More details are provided in Appendix 3 at the end of this document.

Note: Please hand deliver your summary to the committee 7 days prior to the RP Presentation and state the day, time, and location of the oral presentation on the front page. Remind your committee of this information when you hand them your document and one day in advance of your RP discussion.

- You should bring a copy of the Original Research Proposal (RP) Evaluation Form to the exam.

- After the RP is defended and dissertator status is achieved, you should register for exactly 2 credits of research (Chem. 992) and 1 credit of group meeting (Chem 964, use the appropriate section for your advisor) in the fall, spring, and summer semester (total credit should be 3). Continue to enroll for zero credits in Chem. 960. Any other course enrollment should be discussed with your major advisor. It is possible to take a 1-3 credit course and lower the research credits to accommodate the required 3 credit total.

During the **Fourth Year** …

- During the spring semester of your 4th year, you will meet with members of your Mentoring Committee, who will review your progress in research and provide guidance and advice. This 4th Year Mentoring Committee Review is informal and no grade will be given. You should prepare a 10-minute overview of your research, with particular emphasis on where you will be going and the problems you are facing. The meeting will involve just you and your mentor committee. You should complete Fourth Year Meeting Form prior to the meeting; fill this out in consultation with your advisor and distribute the completed form to your committee in advance. Please bring hard copies of your CV to the meeting. Please use the first five minutes to bring your Mentoring Committee up to speed on your research and the second five minutes to present issues or stumbling blocks that you are now confronting. You may use the black board, prepare a computer
presentation, or bring a recent poster with you. During the remaining 20 minutes or so of the meeting, your Mentoring Committee will discuss your research with you and your current plans for completing your Ph.D. This is an opportune time to talk about any concerns that you may have.

During the **Fourth and Subsequent Years** …

- **Research continues.** In collaboration with your major professor, you should prepare and submit manuscripts for publication as appropriate.

- **You will write a Ph.D. Thesis,** in accordance with Graduate School requirements, and submit it to the major professor for approval.

- **You will defend your thesis in a final oral exam.**
 - The **four-member** evaluation committee should include the mentoring committee (the major professor and three other faculty members).
 - At least one member of the evaluation committee must be from outside the physical chemistry path.
 - Three weeks before the PhD defense complete the form [PhD Final Degree Warrant Request Form](#). Instructions are clearly provided on the form.
 - Once the form is complete submit it online to Arrietta Clauss Graduate Student Services Coordinator for processing with the Graduate School and discuss with Arrietta any outstanding Graduate School requirements needed to graduate.

Note: *Please hand deliver your Ph. D. Thesis to the committee and state the day, time, and location of your thesis defense on the front page. Remind your committee of this information when you hand them your document and one day in advance of your Ph. D. dissertation.*

- During the final year you should seek permanent employment or a postdoctoral position. Your major professor, mentor committee, and other members of the department are dedicated to assisting you in your deliberations and search for employment. The Graduate Program Coordinator office can provide sample CVs and information about industrial interviews. In addition, the department frequently sponsors events that bring employers and students together in the department.

Some Notes on Satisfactory Progress

All Graduate School and Chemistry Department requirements must be met, including the core coursework and minor requirements (see below). The Graduate School requires that your grade point average be at least 3.0 (not including research credits) each semester in order to maintain satisfactory progress. They also require an overall GPA of at least 3.0 to receive a Ph.D. degree. Note that Chem 901 and Chem 960 (when taken for credit) count towards your GPA. Chem 607 does not count towards your GPA.
Credit Load (Non-Dissertator and Dissertator)

As a non-dissertator, the Graduate School enrollment requirement is 8-15 credits for the fall and spring semesters and 2 credits for the summer semester. As a dissertator, the requirement is 3 credits each semester, including summer. The department encourages each non-dissertator to register for 15 credits in the fall and in the spring in case a course must be dropped\(^1\).

Summary of Research Credits and Coursework

Every Semester

- Register for zero credits of Chem. 960 (except the spring semester of your first year – take for 2 credits)
- Register for 1 credit of Chem. 964 (see on-line Course Guide for section number; does not apply to the first semester of your first year)

Non-Dissertator

- Register for 8-15 credits in the fall and spring and 2 credits in the summer. Register for research credits (Chem. 992), group meeting (Chem 964, use the appropriate section for your advisor) in addition to lecture course (if needed). Check the on-line Course Guide for the appropriate Chem 992 and Chem 964 section number for your group

Dissertator

- Register for 3 credits for fall, spring and summer. Register for 2 research credits (Chem 992) each semester (fall, spring, and summer) and 1 credit of group meeting (Chem 964, use the appropriate section for your advisor), and 0 credits of seminar (Chem 960). Check the on-line Course Guide for the appropriate Chem 992 and Chem 964 section number for your group.

Special notes for first year students:

Fall Semester

- Enroll in Chem. 661, Chem. 675, Chem. 901 (1 credit), Chem. 960 (0 credit), and Chem. 992 (8 credits) to bring the total number of credits to 15.

Spring Semester

- Enroll in Chem. 960 for 2 credits.
- Enroll in Chem. 607 for Laboratory Safety (required, 1 credit)

Important notes on the Blue Schedule Card

The Blue Schedule Card needs to be filled out by TA’s only.

Fall Semester, first year

Chem. 661 MWF
Chem 675 MWF

\(^1\) To ensure the 8 credit minimum is maintained.
Chem 901 F
PChem Seminar, 11:00 AM, Tuesday (enter as ‘PChem Seminar’ not as ‘Chem 960’) TA assignment might need to be scheduled during this time

Spring Semester, first year
Chem. 960 for 11:00 AM Tuesday and all other Chem. 960 meeting times.
All other courses you are taking.
Your group meeting times.

All other semesters
PChem Seminar, 11:00 AM, Tuesday (enter as ‘PChem Seminar’ not as ‘Chem 960’) TA assignment might need to be scheduled during this time
All other courses you are taking.
Your group meeting times.

All semesters
Do not enter student seminar at 4:30 PM Tuesday. It is too difficult to schedule TA assignments with this constraint.

The Ph.D. Program in Chemistry:
Key Aspects and Mission Statement

The requirement to produce a Ph.D. thesis, the dominant feature of any graduate program, unites all doctoral students in Chemistry. Other requirements, however, vary somewhat among the paths within the Department. The purpose of this document is to suggest a set of guidelines that support a degree of uniformity among these other requirements, while at the same time allowing for the diversity among different paths that is inevitable and desirable in so highly specialized a process as earning the Ph.D.

The key aspect is that the Ph.D. requirements for the Department are stated as a sequence of steps, each of which may be completed in any path. The requirements are represented by six stages: 1) Domain knowledge, 2) Thesis background presentation, 3) Literature evaluation, 4) Research Proposal, 5) Thesis planning meeting, and 6) PhD Thesis. The first four stages will normally be completed before the end of the sixth semester of the student’s study. These stages are outlined below, with details determined by each individual program.

1) Domain knowledge

The Ph.D. candidate should demonstrate knowledge in a domain of expertise.

Departmental requirements for these skills are normally completed before the end of the fourth semester, and it is anticipated that different programs may have different components for this requirement. For example, this requirement could include coursework, completion of a minor, and exams that test domain knowledge skills.

2) Thesis Background presentation (TBE)
The Ph.D. candidate should present, justify, and defend the thesis research project.

Departmental requirements for these skills are normally completed before the end of the fourth semester. The purpose of this requirement is to assess the student's preparation for research, including the goals, techniques, and background for the problem to be addressed. Actual research results are not required, but may of course be included if available. It is expected that this requirement will include a written and an oral component (your TBE).

3) Literature evaluation

The Ph.D. candidate should demonstrate the ability to read, understand, analyze and critically evaluate research papers.

Departmental requirements for these skills are normally completed between the end of the 2nd and 4th year, and it is anticipated that different paths may have different components for this requirement. Examples include the literature seminars and the literature assignment in the 2 credit Chem 960 course.

4) Original Research Proposal (RP)

The Ph.D. candidate should present and defend an original Research Proposal

The original research proposal should be in an area not closely related to the student’s Ph.D. research. The proposal should establish that the proposed research will be of interest and that it is feasible. It is expected that the candidate will prepare a written proposal and then present and defend the proposal. It is expected that the entire proposal, including the core idea, its development, and the writing of the document, will be substantially the work of the candidate. The proposal will normally be completed before the end of the 3rd year.

5) Thesis planning meeting

The PhD candidate should present plans for completion of the thesis (mentor committee meeting).

For students who have not set a date for defense of their thesis by the end of the 5th year, a thesis committee meeting will be held to review progress, to plan for completion of the Ph.D. research, and to work out an “end-game” strategy. If at this meeting, a thesis completion date within a year is not set, a second meeting will be held six months later. The purpose thesis planning meetings is to help the student make it through the program in a timely manner.

6) Ph.D. Thesis

The Ph.D. candidate should carry out and disseminate research that goes to the edge of current knowledge and pushes it out a little further.

Scientific excellence is our central goal. This is the final stage, and it is expected the candidate will complete this requirement before the sixth year, although no time constraint is placed.

Wednesday, March 21, 2018
Thesis Committee (same as Mentoring Committee)

A candidate will have a committee with (at least) three faculty members. The composition of the committee will be decided by mutual consent of the candidate and major professor before the Thesis background exam (TBE) presentation. The committee will be involved as much as possible in evaluation of each of the requirements.

Philosophy

All the existing paths already have the above requirements. The main point of elucidating the structure is that all paths will be more or less in phase, i.e., the requirements will occur in sequence and at roughly similar times. This will significantly aid the students that wish to change paths. A student could, for example, complete the domain knowledge and literature evaluation skills in Physical Chemistry and then complete the rest of the requirements in a different path, without having to repeat any exams.

The overall goals of a successful Ph.D. candidate will:

- Possess domain expertise and breadth of knowledge
- Be self-taught, and able to find, define, and solve new problems
- Possess communication, teamwork, and leadership skills.
Appendix 1

GRADUATE COURSES in PHYSICAL CHEMISTRY
(Many upper level courses are taught every second year – see Course Guide for scheduling)

623 Experimental Spectroscopy. 2-3 cr. Theory behind current spectroscopic methods employed in chemical analysis with applications in atomic and molecular absorption spectroscopy, infrared and Raman vibrational spectroscopy, fluorescence and light scattering; lecture and laboratory projects.

654 Materials Chemistry of Polymers. 2-3 cr. Polymer classification, synthesis, and molecular architecture; solid state structure and characterization; glassy state and glass transition; polymer rheology in solids and gels; transport, dielectric and optical properties.

661 Chemical and Statistical Thermodynamics. 3 cr. Basic chemical thermodynamics with applications to chemical and phase equilibria and the study of solutions; introduction to statistical mechanics and calculation of thermodynamic quantities from molecular models; stability and fluctuations.

664 Physical Chemistry of Macromolecules. 2-3 cr. Structure, thermodynamics, and dynamics of polymers in solution and in the bulk; theoretical models and experimental methods; polymer characterization

668 - Biophysical Spectroscopy. 2-3 cr. Survey of spectroscopic techniques used in the quantitative analysis of biological systems, including basic principles, key applications and cutting-edge advances.

665 Biophysical Chemistry. 4 cr. Equilibrium thermodynamics, chemical kinetics and transport properties, with emphasis on solution behavior and application to noncovalent interactions of biological macromolecules in solution.

675 Introductory Quantum Chemistry. 3 cr. Basic principles of quantum chemistry, exactly solvable problems, angular momentum, approximation methods, applications to electronic structure.

762 Molecular Reaction Dynamics. 2-3 cr. Microscopic approach to chemical dynamics.

763 Introduction to Molecular Spectroscopy. 2-3 cr. Quantum mechanics of molecular rotation and vibration; principles of group theory; electronic, vibrational, and magnetic resonance spectroscopy in gas and condensed phases.

775 Electronic Structure of Molecules. 2-3 cr. Applications of quantum mechanics to the electronic structure and properties of molecules.

777 Physical Chemistry of Surfaces. 2-3 cr. Structure, thermodynamics, kinetics, and reactivity of molecules at the interfaces between gases, liquids, and solids, with applications to catalysis, atmospheric chemistry, monolayers, and thin films.
860 Selected Topics in Physical Chemistry. 1-3 cr. This course covers various specialized topics in physical chemistry. The course material varies depending on the instructor.

864 Statistical Mechanics. 2-3 cr. Fundamentals of statistical mechanics; applications to equilibrium and non-equilibrium properties of gases and condensed phases; selected advanced topics.

872 Selected Topics in Macromolecular and Biophysical Chemistry. 1-3 cr.

960 Seminar—Physical Chemistry. 0-2 cr.

964 Seminar—Molecular Dynamics. 0-1 cr. (This is the Physical Chemistry Group Meeting Course)

992 Research—Physical Chemistry 1-12 cr.
Appendix 2

THESIS BACKGROUND EXAM (TBE) INFORMATION

Thesis Background Exam

The purpose of the Thesis Background Exam is to demonstrate the student’s comprehension of the goals, techniques, and background for the thesis research that is to be undertaken.

The exam consists of a written summary and an open presentation by the student (of approximately 25 minutes in duration) outlining the background, aims, and methods of the Ph.D. research that will be pursued. If the student has obtained preliminary results, these should also be presented. A period of questioning (of about 40 minutes in duration) will follow by a committee of three faculty including the research advisor. For example, you may be called upon to answer questions about pertinent background literature, to demonstrate familiarity with some of the techniques which will be required, or to describe the significance of the research and the rationale for the methods to be employed.

The written summary (format depends upon research group: consult with your research advisor) including references, and must be presented to the committee three days before the exam. Please hand deliver your written summary, and state the day, time, and location of the oral presentation on the front page, to your committee and send them a copy by email.

You are required bring a copy of the Thesis Background Exam (TBE) Report to the exam.

The exam will be scored on a 5-point scale. In case of an unsatisfactory performance, the committee may set a date for a second opportunity.

Preparation for Exam

The assumed background for this exam is equivalent to Chem 661, 675, and other physical chemistry graduate courses. Attending and actively participating in seminars and group research discussions, reading the chemical literature, and thinking about the research going on around you, as well as your own research, can all afford valuable experience in relating principles learned in courses to questions of current research interest. In these activities, try to build a broad base rather than concentrating only on areas of greatest immediate interest to you.

While it is true that you must complete this requirement in order to be admitted to candidacy for the Ph.D. degree, the primary purpose is not to screen out students but rather to encourage intellectual activity and growth. Emphasis is placed on providing feedback through face-to-face interactions between students and faculty, and opportunities for special assignments.

Review

After completion of the Thesis Background Exam, your complete record to date (exam and assignment scores, course grades, and research activity) will be reviewed by the faculty of the
Physical Chemistry Path together with major professors not in the Physical Chemistry Path who have students in the group under review. Possible actions are:

a) You will be allowed to proceed to the next step in the Ph.D. program.

b) You will be allowed to proceed, but additional coursework or study in specific areas may be recommended, and you may be required to complete a special assignment.

c) You will not be permitted to continue in the Ph.D. program. In such cases, an appeal can be made to the Physical Chemistry Path.
Appendix 3

PRESENTATION OF ORIGINAL RESEARCH PROPOSAL (RP)

The purpose of the original Research Proposal (RP) is to provide experience in developing and presenting new ideas for research. The RP should involve original research in an area not closely related to your Ph.D. research. The student needs to identify a research goal that is significant and achievable, choose a suitable approach, and describe the major steps and techniques required to reach that goal. A committee, typically the student’s mentor committee, evaluates the written proposal and oral presentation. Alternately, you may choose other faculty members closer to the area of the RP. It is important that the chair of the mentor committee and the student’s major professor are present for the research proposal.

To begin, the student presents the major professor with one or two suggested research projects and proposed approaches. Upon approval by the major professor, the student develops one of the projects further, preparing a detailed written proposal in a format suggested by the major professor. One week prior to the oral presentation, the student provides a paper copy of the proposal to the committee members and to the Physical Path Coordinator, Cheri Stephens. Please include references and abstract should include the time, date, and place of the oral presentation. Please send a copy by email to your committee as well. Only your committee will attend your presentation.

You are required to bring a copy of the Original Research Proposal (RP) Evaluation Form to the exam.

The oral presentation should not exceed twenty-five minutes. You may be interrupted with questions during your presentation. Following the closed presentation, a question and discussion period ensues. The committee files a written record of its evaluation of the proposal in the Path Office, and the major professor discusses the presentation, proposal, and the committee’s evaluation with the student. If the committee finds the initial attempt unsatisfactory, it may provide the student with another opportunity to present a proposal at a later date determined by the major professor in consultation with the committee and student. The committee may request further written material instead of or in addition to a second presentation.

Presentation of the original Research Proposal (RP) represents the last phase of the preliminary examination for the Ph.D. Three weeks before the RP use the link to complete the form Preliminary Warrant Request Form to Become a Dissertator to request a warrant from the Graduate School to become a dissertator. Instructions are clearly provided on the form. Once completed submit the form online to Arrietta Clauss Graduate Student Services Coordinator for processing with the Graduate School. Successful completion of the original Research Proposal requirement will be recorded on the Preliminary Warrant, which should then be returned to the Program Coordinator.