Introduction to 13C-NMR Spectroscopy

Main topics

- 13C-atom chemical shift range
- 1H-coupled and decoupled 13C-NMR spectra
1H-NMR Spectrum of n-pentane

300 MHz 1H NMR
In CDCl$_3$

three 1H-atom environments

1H NMR spectrum of n-pentane showing three distinct environments at 5.94 and 6.00 ppm.
The ¹H-NMR spectrum of n-hexane shows three distinct environments. The spectrum was recorded at 300 MHz using CDCl₃ as the solvent.

The chemical shifts observed are at 8.00 and 6.00 ppm, indicating the presence of different types of hydrogen atoms in the molecule.
1H-NMR Spectrum of n-docosane

300 MHz 1H NMR
In CDCl$_3$
13C-NMR Spectroscopy

13C is NMR active ($I = \frac{1}{2}$); 12C is NMR inactive ($I = 0$).

The natural abundance of 13C is $\sim 1.1\%$.

A greater chemical shift range provides greater differentiation of signals; reduced 2nd order effects.

Often the NMR experiment is performed in a 1H-decoupled manner to simplify the spectrum; removes coupling to H-atoms.
13C-NMR Spectrum of n-Hexane

13C-atom environments

75 MHz 13C NMR
In CDCl$_3$
13C-NMR Spectrum of Methanol

1H is > 99% abundant; it couples strongly to 13C – atom it is attached to (1J$_{HC}$ = 100-210 Hz) with normal $n+1$ rule splitting.

512 scans
30 min
10 M concentration
13C-NMR Spectrum of Ethanol

CDCl$_3$

CH$_3$CH$_2$OH

1H – Coupled

1H – Decoupled

512 scans
30 min
10 M concentration
13C-NMR Spectrum of Ethyl Cyanoacetate

512 scans
30 min
0.35 M concentration
\[^{13}\text{C}-\text{NMR Spectrum of Ethyl Cyanoacetate} \]

75 MHz \[^{13}\text{C}\] NMR
In CDCl\(_3\)

Isotropic NMR Shifts relative to TMS calculated with WebMO/Gaussian09 at B3LYP/6-31G(d)
Determination of 4’-sulfamoylacetanilide Regiochemistry
Determination of 4’-sulfamoylacetanilide Regiochemistry