Problem R-09O ($\text{C}_{10}\text{H}_7\text{NO}$). Shown below is the 250 MHz proton homonuclear shift correlated spectrum (H,H-COSY) of quinoline 8-carboxaldehyde. The aldehyde proton at δ 9.5 is not shown (C. G. Anklin, P. S. Pregosin Magn. Reson. Chem. 1985, 23, 672)

Assign the proton signals A through F to the protons H2 to H7.

$H^2 = ____$

$H^3 = ____$

$H^4 = ____$

$H^5 = ____$

$H^6 = ____$

$H^7 = ____$
Problem R-09O ($\text{C}_{10}\text{H}_7\text{NO}$). Shown below is the 250 MHz proton homonuclear shift correlated spectrum (H,H-COSY) of quinoline 8-carboxaldehyde. The aldehyde proton at δ 9.5 is not shown (C. G. Anklin, P. S. Pregosin, *Magn. Reson. Chem.* 1985, 23, 672)

Asign the proton signals A through F to the protons H^2 to H^7.

$\text{H}^2 = \underline{\quad F \quad}$

H2 can be assigned to F on the basis of chemical shift. It is correlated to A and D. A is a dd with two large couplings, so must be H3, and thus D = H4

$\text{H}^3 = \underline{\quad A \quad}$

$\text{H}^4 = \underline{\quad D \quad}$

H7 can be assigned to E on the basis of chemical shift (ortho shift of CHO larger than para shift). It is correlated to C and B. B is a triplet (two large couplings), so must be H6, and thus C = H5

$\text{H}^5 = \underline{\quad C \quad}$

$\text{H}^6 = \underline{\quad B \quad}$

$\text{H}^7 = \underline{\quad E \quad}$