Problem R-12C \((C_{12}H_{16}FNO_4)\).
100 MHz \(^{13}\text{C}\) NMR spectra in DMSO-d6
Source: Allen B. Reitz/JOC 1994, 59, 3175 (digitized hard copy)
Problem R-12C The 100 MHz 13C NMR spectra of three substituted pyrrolidines is shown on the next page. Their structures are shown below (ttc = trans-trans-cis). $R =$ para-fluorophenyl.

(a) Identify the compound (ttc, ctc or ttt) which corresponds to spectrum R-12C-1. Give your reasoning.

(b) Identify the compound which corresponds to spectrum R-12C-2. Give your reasoning.

(c) Identify the compound which corresponds to spectrum R-12C-3. Give your reasoning.

(d) In each of the spectra there are two peaks at δ 155 ppm. Assign and explain these peaks.
Problem R-12C \(\text{C}_{12}\text{H}_{16}\text{FNO}_{4} \).

100 MHz \(^{13}\text{C} \) NMR spectra in DMSO-d6
(Source: Allen B. Reitz/JOC 1994, 59, 3175)
Problem R-12C The 100 MHz 13C NMR spectra of three substituted pyrrolidines is shown on the next page. Their structures are shown below (ttc = trans-trans-cis). R = para-fluorophenyl.

(a) Identify the compound (ttc, ctc or ttt) which corresponds to spectrum R-12C-1. Give your reasoning.

ttc

This must be either the ctc or ttt isomer, each of which has an axis of symmetry.

(b) Identify the compound which corresponds to spectrum R-12C-2. Give your reasoning.

ctc

This must be either the ctc or ttt isomer, each of which has an axis of symmetry. In the ctc isomer two of the groups (an OH and a CH$_2$OH) on each side are cis to each other, and thus there is a γ-gauche interaction between them that is largely absent in the ttt isomer, so expect an upfield shift of the CH$_2$OH carbon. So this must be the ctc isomers since all carbons are upfield of the ttt isomer

(c) Identify the compound which corresponds to spectrum R-12C-3. Give your reasoning.

ttc

This is the only isomer which has all carbons different (no symmetry), so must be ttc

(d) In each of the spectra there are two peaks at δ 155 ppm. Assign and explain these peaks.

F

This is the C-F carbon, split into a doublet by J_{CF}