Quiz 601 (C_{13}H_{24}SeSi_2)

300 MHz 1H NMR spectrum in CDCl$_3$

Sample is 100% 13C enriched at C-H carbon

Source: Bill Sikorski / Reich 33-11

Identify all signals, estimate coupling constants g

Me$_3$Si
Me$_3$Si-^{13}CH
PhSe

13C enriched

(a)

(b)
Quiz 601 \((C_{13}H_{24}SeSi_2)\)

300 MHz \(^1H\) NMR spectrum in CDCl\(_3\)

Sample is 100\% \(^{13}C\) enriched at C-H carbon

Source: Bill Sikorski / Reich 33-11

Identify all signals, estimate coupling constants

Me\(_3\)Si

Me\(_3\)Si-\(^{13}\)CH

PhSe

\(^{13}C\) enriched

\(^{29}Si\) \(I = 1/2, 4.7\%, 19.87\) MHz

\(^{77}Se\) \(I = 1/2, 7.5\%, 19.07\) MHz

\(^{13}C\) \(I = 1/2, 1.1\%, 25.14\) MHz

\(^1H = 100\) MHz

\(^3J_{H-C} = 2.5\) Hz

\(^1J_{H-C} = 117\) Hz

\(^2J_{H-Si}\) and \(^2J_{H-Se} = 8\) Hz

\((2\times4.7 + 7.5)/2 = 8.45\)

\(^1J_{H-C} = 120\) Hz

\(^2J_{H-Si} = 6\) Hz
Quiz 602 (C_{13}H_{24}SeSi_{2})
75.4 MHz 13C {1H} NMR spectrum in CDCl$_3$
Sample is 100% 13C enriched at C-H carbon
Source: Bill Sikorski / Reich 33-11
Identify all signals, estimate coupling constants

29Si $I = 1/2$, 4.7%, 19.87 MHz
77Se $I = 1/2$, 7.5%, 19.07 MHz
13C $I = 1/2$, 1.1%, 25.14 MHz

13C enriched
Quiz 602 (C_{13}H_{28}SeSi_{2})

75.4 MHz 13C (1H) NMR spectrum in CDCl$_3$

Sample is 100% 13C enriched at C-H carbon

Source: Bill Sikorski / Reich 33-11

Identify all signals, estimate coupling constants

The $^{2}J_{C-C}$ is not resolved, the $^{1}J_{C-Se}$ satellites are too small to detect

(c)

More on next page ...
Quiz 602 (C_{13}H_{24}SeSi_2)
75.4 MHz 13C \{^1\text{H}\} NMR spectrum in CDCl$_3$
Sample is 100% 13C enriched at C-H carbon
Source: Bill Sikorski / Reich 33-11

Not only does the central peak have satellites due to coupling of the 13C with the 7.5% of molecules having a 77Se (green) or the 9.4% having a 29Si (purple), the satellites in turn have detectable satellites due to the minute fractions of the sample that have both a 77Se and a 29Si in it (red), as well as those molecules having two 29Si atoms (blue), as shown.

$^1J_{CSe} = 70.6$ Hz
$^1J_{CSI} = 43.9$ Hz

13C 29Si

13C 77Se

29Si 29Se

13C 29Si

29Si

13C 77Se

13C 77Se

13C 29Si

29Si

29Si