Strategies for Solving Problems using NMR, IR

1. First of all determine the Index of Hydrogen Deficiency (IHD)

 \[IHD = \#C \text{ atoms} - \frac{\#H \text{ atoms} - 1}{2} \]

 Note: For each halogen atoms in the molecular formula add one to the total hydrogen atoms in the molecular formula; for each nitrogen atom present in the molecule subtract one from the total hydrogen atoms. Example:

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>IHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₅H₉O₂Br</td>
<td>1</td>
</tr>
<tr>
<td>C₅H₁₁N</td>
<td>1</td>
</tr>
</tbody>
</table>

 Cases where the IHD ≥ 4 there is the possibility of a benzene ring. Chemical shifts of the benzene protons on the 1H-NMR will confirm the presence of the aromatic ring.

2. If you are provided with the Infrared Spectrum (IR) of the compound look for functional groups.
 a) A broad signal around the 3300 cm⁻¹ suggests the presence of –OH due to an alcohol or carboxylic acid. Hydrogen-bonding of the –OH stretch makes this peak very broad. If, on the other hand, the molecule contains nitrogen and there’s a medium intensity peak around 3300 cm⁻¹ suspect an –NH stretch, i.e. the presence of an amine or amide.
 b) The very sharp absorption of the C=O around ~1625 to ~1750 cm⁻¹ indicates the presence of a carbonyl compound; aldehydes, ketones, carboxylic acids, esters, amides.
 c) Functional groups like -C≡N (nitriles), -C≡C-H (alkynes) are easily identified in IR.

3. Use of ¹H-NMR.
 a) How many different sets of signal appear in the spectrum? (This can be determined by the number of integrated peaks.)
 b) What is the relative ratio of all the different hydrogen peaks present? Do they add to the total number of hydrogen atoms in the molecular formula? See Example below.
The 1H-NMR of the compound with molecular $C_7H_{12}O_4$ (shown above) has three different types of hydrogen atoms (there are three different integrated peaks) and an IHD = 2. The ratio of hydrogen atoms do not add to the total hydrogen atoms, but multiplying by two the ratios becomes 4:2:6, which then adds up to 12 total hydrogen atoms.

For a benzene derivative the integration can tell us the type of substitution; mono, di, tri, etc.

c) The chemical shift provides information into the chemical environment of the different hydrogen atoms in the molecule. As a rule of thumb, a chemical shift seen at ≤ 1.0 ppm and an integration of 3.0 most possibly indicates an alkyl group whose terminal is a $-\text{CH}_3$. An aldehyde proton will show at ~ 9.0 ppm and a carboxylic acid ~ 11.0 ppm. Remember that electronegative atoms tend to deshield hydrogen atoms moving their chemical shifts downfield by the inductive effect.

d) The splitting patterns are very important because they can help us understand the hydrogen atoms attached to adjacent carbon atoms.

1. Remember the $n+1$ rule for the splitting pattern.
2. An isolated ethyl group ($-\text{CH}_2\text{CH}_3$) will show a particular pattern. A triplet from the $-\text{CH}_3$ (the neighbor is a $-\text{CH}_2$) and a quartet from the $-\text{CH}_2$ (see 1H-NMR above).
3. An isolated isopropyl group ($-\text{CH(CH}_3)_2$) will show a doublet from the methyl groups and a septet from the methyne ($-\text{CH}_2$).
4. The 1,4 di-substituted benzene is the simplest splitting pattern. It’ll show up as a pair of doublets each with an integration of 2.

4. After assigning partial structures on the 1H-NMR spectrum try to place them together to form the compound. Next, try to generate a spectrum from the proposed structure and compare it to the spectrum provided.