Solvents, NMR Tubes, and Susceptibility Matched Plugs Sets

Tubes and Caps Compatible with New Bruker Spectrometers (and their robots)

A. Choose tubes compatible with 400 and 500 MHz NMR: see 2 sections below.

B. The 400 robot requires either 4” or 7” tubes with special caps: for more information, see http://www.chem.wisc.edu/~cic/nmr/Guides/Ba3vug/Av400UG_IconNMR.pdf.

C. Our 500s can handle 7 to 9” tubes, but we recommend NOT using 9” tubes: that is very close to the maximum tolerance for our 500 MHz sample changers.

D. J-Young tubes: request 528-LPV-209M, which are compatible with our 500 MHz Bruker robots, and are still long enough for work on our Varian spectrometers.

Solvents

The deuterated stockroom solvents are fine for all standard experiments.

Glass tubes often have acetone and/or water residues that are easily observed on more sensitive spectrometers. Rinse tubes carefully prior to any work at lower concentrations (sub-millimolar).

Achieving optimal line shapes in an NMR experiment depends critically on the amount of solvent used. The recommendation is:

- Varian 5mm probes
 - ≥ 0.6 ml solvent
- older Bruker 5mm probes (ACs, 360)
 - ≥ 0.45 ml solvent
- newer Bruker 5mm probes
 - ≥ 0.6 ml solvent

In general, what is needed is to achieve best line shape is for the solvent column to equal 3 times the rf coil length. Different probes have different coil lengths, so there is no fixed length guideline to apply. The above-recommended volumes roughly fit the rule-of-thumb:

- Varian 5mm coil length = 16 mm → 48 mm recommended solvent length = 650 µl.
- older Bruker 5mm coil length = 12 mm → 36 mm recommended solvent length = 500 µl.
- newer Bruker 5mm coil length = 18 mm → 54 mm recommended solvent length = 700 µl.

For variable-temperature experiments, when using expensive solvents and to maximize concentration, minimum solvent volume is preferred. Empirically, we find that using less solvent than the above-recommended volumes can safely be done, but only within certain limitations, and with a price to be paid of increasing the shimming effort needed to achieve a desired linewidth. Going less than 0.45 ml without susceptibility plugs (see below) on a Varian 5mm probe is almost certain to be fatal to achieving reasonable line shapes. Similarly, going to less than 0.35 ml on an older Bruker 5mm probe will almost certainly prevent optimal line shapes from being achieved. [Longer rf coils have been found to be more sensitive, in general, for fixed amounts of compound: i.e., although the concentration is lower, the overall sensitivity is higher. That is why all modern probes (to our knowledge) have longer coil lengths (which require more solvent).] Since sensitivity decreases with degraded line shape, the user should never push solvent volume too low for sensitivity reasons (i.e., to maximize concentration).

Susceptibility plugs allow the solvent volume to be reduced to up to 1/3 that stated above by removing the susceptibility gradients occurring at the solvent-air interface. Susceptibility plugs are regularly used in our facility: one gains the expected factor of up to $3^2 (=9)$ times reduction in experiment time for identical S/N. Thus, an overnight experiment without susc. plugs gives the same S/N as a 1.5 h experiment with the susc. plugs! **USE SUSC. PLUGS WHEN SAMPLE AMOUNT IS LIMITED!!!**

The rule-of-thumb when using susceptibility plugs is to have the solvent volume equal the length of the rf coil + 2mm on each end of the column. **Thus, a solvent length of 20mm is recommended for use with Varian 5mm probes, and 22mm on our Bruker 5mm cryoprobes.** The facility director has various sets of susc. plugs that are available on loan for students to try. See him for additional details about these extremely useful items.

Wilmad NMR tubes (800-229-5171 or www.wilmad.com):

for 250/300 MHz work:
- routine work: WG-5mm-ECONOMY-8 $1.70/ea (OK for routine & 13C)
- recommended: 507-PP-8 7.00 (current stock room tubes)

for 360 MHz work:
- recommended: 507-PP-8 (or ECONOMY) 7.00 (current stock room tubes)

for 500/600 MHz work:
- routine work: 507-PP-8 (or ECONOMY) 7.00 (OK for routine & X nucleus)
- recommended: 528-PP-8 12.60 (stockroom now has)
- best: 535-PP-8 17.45 (for solvent suppression)
- best(er): 541-PP-8 25.75 (for 750 work?)
- best(erest): 542-PP-8 30.90 (for 800/900?)

The ECONOMY tubes are consistently “good enough” on the 300/400 spectrometers; similar with 507 tubes on the 500s (cgf: seems ECONOMY are working ok even at 500 MHz for routine use). Use 528s for best 1H spectra at 500 and at 600 MHz. If the bulk of your group’s work is routine intermediate checks on the 300/400s, the ECONOMY tubes likely will be fine. Groups performing water suppression are strongly urged to use 535, or 528 as a minimum, tubes. Keep in mind while shimming that the most common problems with resolution are not the tube type, but rather insufficient solvent height (see previous pg), “floaters” in the solvent, or scratches on the tube. Even so, using the wrong tube (e.g., a 507 for high-quality water suppression) can present insurmountable problems. Spending a few dollars more for the right tubes is the right purchasing decision: using additional spectrometer time for shimming adds up in usage fees!

NMR tubes come in 7”, 8” and 9” lengths. Pricing (may not be current) is for 8”. Use 7” for the 400 (or 4”).

See Wilmad’s NMR-010 technical note at their web site (www.wilmad.com) for suggestions on how to correctly clean and dry tubes. In particular, the following is from that note:
Drying tubes at elevated temperatures can reshape and ruin precision NMR tubes. If you dry tubes in an oven, WILMAD recommends placing tubes on a perfectly flat tray at 125° C for only 30-45 minutes. Better is the use of a vacuum oven that will remove water at lower temperatures. In a flat position, tubes that do reshape could be out-of-round and may not fit the spinner turbine as well. But they'll not affect the spectrometer probe adversely. Tubes placed in an oven in a beaker, flask, or tube rack can bend, increasing Camber (lack of straightness). Bent tubes may still fit the spinner turbine, but can damage or break the NMR probe insert, a costly repair with many probes.

Other vendors sell similar products; I cannot comment on relative quality of the other vendors, but know the Wilmad tubes give consistently good results.

Susceptibility Inserts (Shigemi):

(724-444-3011 or www.shigeminmr.com/)

Shigemi tube sets are generally regarded as optimum for precision/best quality work (e.g., when needing water suppression). The disadvantages are slightly higher cost (glass is more chemically durable, however), and susceptibility matching to the solvents shown below. Change V (15mm length) to J (12mm) or B (8mm) for Bruker probes, and 005 to 003, 008 or 010 ($150-160 ea) for tube diameter. Order a cap (xxx-CAP for $9.30 ea) to hold the upper plug stationary.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>tube color</th>
<th>–c (cgs)</th>
<th>Density (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>clear (etched)</td>
<td>0.78</td>
<td>1.26</td>
</tr>
<tr>
<td>Chloroform</td>
<td>CMS</td>
<td>0.74</td>
<td>1.48</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>CMS</td>
<td>0.73</td>
<td>1.36</td>
</tr>
<tr>
<td>Water</td>
<td>CMS</td>
<td>0.72</td>
<td>1.00</td>
</tr>
<tr>
<td>Deuterium Oxide</td>
<td>BMS</td>
<td>0.70</td>
<td>1.10</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>CMS</td>
<td>0.69</td>
<td>1.58</td>
</tr>
<tr>
<td>Dimethylsulfoxide</td>
<td>DMS</td>
<td>0.68</td>
<td>1.10</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>CMS</td>
<td>0.68</td>
<td>0.78</td>
</tr>
<tr>
<td>Toluene</td>
<td>CMS</td>
<td>0.62</td>
<td>0.86</td>
</tr>
<tr>
<td>Benzene</td>
<td>CMS</td>
<td>0.61</td>
<td>0.87</td>
</tr>
<tr>
<td>Ethanol</td>
<td>CMS</td>
<td>0.58</td>
<td>0.79</td>
</tr>
<tr>
<td>Diethyl Ether</td>
<td>CMS</td>
<td>0.53</td>
<td>0.71</td>
</tr>
<tr>
<td>Methanol</td>
<td>CMS</td>
<td>0.53</td>
<td>0.79</td>
</tr>
<tr>
<td>Acetone</td>
<td>CMS</td>
<td>0.46</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Susceptibility Inserts (Wilmad):

These inserts are polymeric (except Zirconia), and thus chemical compatibility with solvent/solute combination must be taken into account for their use. The 1st line following the price indicates the susceptibility match to the solvent; the 2nd line indicates the chemical compatibility with the solvent and solute combination.

- **5mm kel-f positioning rod** $24.00
- **5mm sealing clamp** $62.00

Aurum plug set $72.00
- Susceptibility match to D2O/water (as solvents)
- Excellent chem compatibility with alcohols, aliphatics, aromatic H-C, esters, ketones

Glass filled PEEK set $40.00
- Susceptibility match to methanol, MEK, ethyl ether (as solvents)
- Excellent chem compatibility with alcohols, aliphatics, aromatic H-C, esters, ketones

G-10 plug set $30.00
- Susceptibility match to acetone, MEK, methanol (as solvents)
- Excellent chem compatibility with strong bases, alcohols, aliphatics, aromatic H-C, esters, ketones

Kel-f plug set $28.00
- Susceptibility match to glycerol (as solvents)
- Excellent chem compatibility with strong acids and bases, alcohols, aliphatics, aromatic H-C, esters, ketones

PPS plug set $50.00
- Susceptibility match to CDC13, water (as solvents)
- Good chem. compatibility with strong acids and excellent compatibility with strong bases, alcohols, aliphatics, aromatic H-C, esters, ketones

Ultem plug set $24.00
- Susceptibility match to D2O, water (as solvents)
- Excellent chem. compatibility with alcohols, aliphatics, esters, ketones

Zirconia plug set $240.00
- Susceptibility match to D2O, CCl4, DMSO, benzene (as solvents)
- Excellent chem. compatibility with strong acids and bases, alcohols, aliphatics, aromatic H-C, esters, ketones