Recall: 'H NMR spectroscopy → signals for all 'H atoms in a molecule: VERY powerful for organic molecule structure determination.

Key question — for a given pair (or larger set) of 'H's — one NMR signal vs. multiple signals??

To answer: Learn to class 'H's w/in a molecule as §10.8. Equivalent vs. Non-equivalent (Homo, Enantiom & Diastereotopic)

Illustrative examples:
1. CH₃CH₃ — All 'H's equivalent to one another (one 'H NMR signal)

 "Substitution test"

 \[
 \begin{array}{c}
 H \quad H \\
 / \quad / \\
 1 \quad 1 \\
 H \quad H
 \end{array}
 \]

 \[
 \begin{array}{c}
 F \quad H \\
 / \quad / \\
 1 \quad 1 \\
 H \quad H
 \end{array}
 \] vs. H-C-C-H vs. etc.

2. Propane = CH₃CH₂CH₃

 2 kinds of 'H's — CH₃ vs. CH₂

 All 6 methyl 'H's are enantiotopic. Both methylene 'H's are enantiotopic & CH₃ 'H's non-equivalent to CH₂ 'H's.
Predict 2°H NMR signals.

3. Butane = CH₃CH₂CH₂CH₃
 2 Kinds of H, CH₃ vs. CH₂
 All CH₃ H's (6) Homotopic
 CH₃ non-equivalent to CH₂
 H's on each CH₂ are enantiotopic.

Relationship between "enantiotopic" & "# of NMR signals"?
If environment (e.g., solvent) is achiral ⇒ Enantiotopic H's are NMR equivalent.

4. H₃C-C-CH₂CH₃ ⇒ 5 Kinds of H
 - 3 H's on C₁ are homotopic
 - 3 H's on C₄ are homotopic
 - C₁ H's non-equiv. rel to C₄
- Lone H on C2 is unique.
 The 2 H's on C3 are diastereotopic — non-equivalent in 1H NMR spectrum.

Cholesterol: 36 different kinds of H's!
- 5 CH3 groups are non-equivalent to one another
 [Note: CH3's at right side are diastereotopic]
- 11 CH2 groups; in every case, the two H's are diastereotopic.

What does NMR measure?
⇒ Nuclear spin.
Nuclei are charged (+); spin leads to magnetic field.
For 1H nuclei, 2 spin states, +1/2 vs. -1/2.
Usually, these two states are indistinguishable (same energy).
But, in a strong magnetic field, the two spin states have different energies → leads to possibility of NMR

Graphical convention:

\[E \uparrow \uparrow \uparrow \uparrow \uparrow \ \\
\text{Apply \ strong \ mag. \ field} \ \\
\text{6 H nuclei w/ spin field} \ \\
+\frac{1}{2} (\uparrow) \text{ or } -\frac{1}{2} (\downarrow) \ (\text{mag. field} (B_0)) \ \\
\]

NMR measurement — determine energy (radio freq. range) required for "spin flip" of nuclei (\(\uparrow \rightarrow \downarrow \))
Abs. of radio freq. radiation by the sample (requires ext. mag. field)—"nuclear magnetic resonance"
Non-equiv. H's w/in a molecule experience different local magnetic environments → different energies (spin flip)