Show how you would prepare the following ethers using the Williamson ether synthesis:

There are two possible combinations of alkoxide and alkyl bromide you can use:

The pathway on the right is favorable for two main reasons: The halide is primary, which means that S_N2 reaction should dominate. Furthermore, the left pathway features a tertiary bromide, and we cannot do S_N2 reactions on these substrates: $E2$ dominates.

The pathway on the left is favorable in this instance. The alkyl bromide is primary which is good for S_N2 reactions. In the right pathway, we have a secondary bromide and $E2$ will compete. The highest yield of ether product will be obtained from the left pathway.

Other notes on Williamson: The phenoxide ion is a good nucleophile for this reaction.
Show how you would synthesize the indicated product from the given starting material:

When we see thioethers (S), we should envision a possible S_N2 reaction, so we need a substrate with a leaving group (with appropriate stereochemistry).

We know a couple of reactions that will afford an anti OH/Leaving Group combination: halohydrins and an epoxide opening, either of these will do.

This compound is obtainable from cyclohexene (starting material) via $\text{Br}_2/\text{H}_2\text{O}$ (halohydrin synthesis). So all we have left to do is write the synthesis in the forward direction.

Syntheses of other thioethers can be completed using a similar mindset:
Things are a bit trickier if we are restricted to a certain reaction: Let's consider the following synthesis in which we are required to feature Hydroxymercuration/Demercuration as a reaction:

The triflate can be made from the alcohol on the right by mixing TfCl and pyridine with the alcohol. Furthermore, the alcohol is obtainable from our starting alkene via a Hydroxymercuration/Demercuration reaction as the desired alcohol is the result of Markovnikov addition of H₂O to the alkene.