Chemistry 343 – Spring 2007
Lecture 2 – MWF 12:05 (Room – Chem 1361)

Instructor: Prof. Daesung Lee (Room 5132 Chemistry)
Phone: 265-8431, Email: dlee@chem.wisc.edu
Office Hours: After lectures on MWF, or by appointment

TAs: Alex Clemens (ajclemens@wisc.edu)
Andrew Dilger (dilger@chem.wisc.edu)
Chris Marvin (cmarvin@chem.wisc.edu)
Brent Bastian (bastian@chem.wisc.edu)
Joel Broussard (jbroussard@chem.wisc.edu)
Hassan Seradj (seradj@chem.wisc.edu)
Joey Stringer (stringer@chem.wisc.edu)

Lecture Notes and Problem Sets: (answers to the problems, quizzes and exams)
***Will be posted electronically at http://www.chem.wisc.edu/courses/343/lee/

(7th ed. is acceptable), “Study Guide and Solution Manual” is recommended
***Chapters 1–8, 11–13 will be covered.

Molecular Models: Molecular Design Inc.: Proteus Framework and Space Filling
***Will be sold in the Chemistry lobby by the members of the Student Affiliates
of the American Chemical Society (SA-ACS).
***Models may be used during quizzes and exams.

Exams and Quizzes: Exams will be given in the lecture hours except for the final
Wednesday, Feb. 28 (12:05–12:55 pm, First exam)
Monday, Apr. 9 (12:05–12:55 pm, Second exam)
Tuesday, May 15 (7:45–9:45 am, Final)
*3 quizzes (dates may be subjected to change)

Grading: 100 pts/Exam + 200 pts/Final + 20 pts/Quiz
***Individual exams will not be curved (only the total score at the end of the
semester)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percent of the Class Receiving this Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Top 15–18%</td>
</tr>
<tr>
<td>AB</td>
<td>Next 5–8%</td>
</tr>
<tr>
<td>B</td>
<td>Next 30–35%</td>
</tr>
<tr>
<td>BC</td>
<td>Next 10–15%</td>
</tr>
<tr>
<td>C</td>
<td>Next 20–25%</td>
</tr>
<tr>
<td>D</td>
<td>Next 10–12%</td>
</tr>
<tr>
<td>F</td>
<td>Bottom 10–12%</td>
</tr>
</tbody>
</table>

***The percentage may be subjected to change.
Schedule of Lectures and Exams:

Jan. 22, 24, 26, 29, 31 Chap. 1: Carbon Compounds and Chemical Bonds
Feb. 2, 5, 7, 9* Chap. 2: Functional Groups
Feb. 12, 14, 16, 19 Chap. 3: Acids and Bases
Feb. 21, 23, 26 Chap. 4: Alkanes
Feb. 28 Exam 1
Mar. 2, 5, 7 Chap. 5: Stereochemistry
Mar. 9, 12, 14 Chap. 6: Ionic Reactions
Mar. 16, 19, 21, 23* Chap. 7: Alkenes and Alkynes I
Mar. 26, 28, 30 Chap. 8: Alkenes and Alkynes II

Spring Recess (Mar. 31–Apr. 8)

Apr. 9 Exam 2
Apr. 11, 13, 18 Chap. 11: Alcohols and Ethers
Apr. 20, 23, 25, 27* Chap. 12: Oxidation and Reduction
Apr. 30, May 2, 4 Chap. 12: Organometallic Compounds
May 7, 9, 11 Chap. 13: Conjugated Systems
May 15 Final Exam (7:45 – 9:45 AM)

*Dates for quizzes.
Recommended Study Habits:

1. **Study regularly and often** (every day, if possible). This course covers a large amount of material, and many of the concepts are difficult to master. Success is most likely for those who are most methodical in their study habits – “cramming” is usually ineffective. The material becomes harder toward the end of the semester, so don’t become complacent if the early material comes easily to you.

2. Recopy your class notes within 24 hours of the lecture. Many important facts slip by before you can record them, but remain in your short-term memory. Recopying gives you the opportunity to set down the full story, and cements your grasp of the points made in the lecture.

3. Read the assigned portions of each chapter completely before the lecture. There is not time for all the important material to be covered in the lecture, and some key points will be left for the text to explain.

4. Write out the answers to all assigned problems before you look at the printed solutions. It is notoriously easy to look at the problem, think for a moment, look at the printed solution, and then tell yourself, “Oh yes, I knew that.” Failure to make the best use of the problems in the text correlates strongly with poor performance in the course. Reviewing lecture notes and the text will make the material familiar, but such familiarity does not necessarily mean that you have acquired the intellectual mastery required to solve new problems (e.g. on tests). The only way to acquire such mastery is by solving problems.

5. Look for relevant problems in other organic textbooks and work those problems, too. It is a commonly heard analogy that learning organic chemistry is like learning a foreign language. The more you practice, the greater your facility will become – and the more successfully you will perform on exams!

A useful information could be found in WileyPLUS (Registration tutorial for WileyPLUS) http://www.wiley.com/college/twomin/stu/register.html