Restrictions on Grignard Reagents - what they can't do.
- Grignard is basic - can't be formed from cmpds. w/ functional grps. more acidic than an alkene (pka > 44)
- Can do rxns. w/ cmpds w/ acidic functional grps. either
 EX: \(-\text{OH}, \text{NH}_2, \text{NHR}, \text{CO}_2\text{H}, -\text{C} = \text{C} \text{-H}\)

- Cannot have a carbonyl or epoxide functional grp.
- Don't do SN2

Alkyl Lithium Reagents
\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \xrightarrow{\text{EqLi}} \text{CH}_3\text{CH}_2\text{CH}_2\text{-Li} + \text{LiBr}
\]
- Similar reactivity to Grignard reagent:

\[
\begin{align*}
\text{H} & \xrightarrow{1} \text{CH}_3\text{Li} \xrightarrow{2} \text{H}_2\text{O} \\
& \xrightarrow{\text{CH}_3\text{-OH}} \text{CH}_3
\end{align*}
\]

Don't do SN2
\[
\text{CH}_3\text{-C} = \text{C}^+\text{Na}^+ \xrightarrow{\text{SN}_2} \text{CH}_3\text{C} = \text{C}-\text{CH}_2\text{CH}_3 \\
\text{from Alkene Addition}
\]

\[
\text{CH}_3\text{-CH} = \text{CH}_3 + \text{CH}_3\text{-C} = \text{C}^+ \xrightarrow{\text{S_N}_2/\text{H}_2\text{O}} \text{CH}_3\text{-C} = \text{C} \bigg(\text{CH}_3\bigg) - \text{OH}
\]

- Best wt primary carbon substrate.

Lithium Dialkyl Cuprates:

\[
2\text{CH}_3\text{CH}_2\text{CH}_2\text{-Li} + \text{CuI} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CuLi}
\]

Ex.

\[
\text{CH}_3\text{-Cu-Li} + \text{CH}_3\text{-CH}_2\text{-Br} \xrightarrow{\text{SN}_2} \text{CH}_3\text{-CH}_2\text{-CH}_3
\]

Any typical **SN**₂-like **SN**₂ substrate should work!

- Works best wt primary alkyl halide, or, some secondary alkyl halides which are cyclic:

\[
\text{Cl} \xrightarrow{\text{CH}_3\text{-Cu-Li}} \text{CH}_3\text{-CH}_2\text{-CH}_3
\]

Ch. 13: Conjugated, unsaturated System

Examples of conjugated systems:

\[
\text{H}_2\text{C} = \text{CH} - \text{H} \xrightarrow{\text{resonance}} \text{H}_2\text{C} = \text{C} - \text{CH}_3
\]

3 porbital overlap means we can get delocalization of \(\pi \) electrons.

Allyl cation:

\[
\text{CH}_2\text{=CH} - \text{CH}_2 \leftrightarrow \text{CH}_2 = \text{C} = \text{CH}_2
\]

Again, 3 porbitals in a row → delocalization.
Looking at π-electron molecular orbitals of a 3-C system

\[\pi^* \]

\[\pi_{no} \quad \text{non-bonding} \]

\[\pi \text{ bonding} \]

\[\text{allyl cation} \quad \text{H}_2\text{C} = \text{CH} - \text{CH}_2 \]

\[\text{allyl radical} \quad \text{H}_2\text{C} = \text{CH} - \text{CH}_2 \]

\[\text{allyl anion} \quad \text{H}_2\text{C} = \text{CH} - \text{CH}_2 \]

Allyl is stable because \(2\pi_- \) in lowest E orbital (full)

\(\pi^* \) bond is spread over 3 C's - a more accurate depiction is:

\[\text{H}_2\text{C} = \text{C}^- \text{H}^- = \text{CH}_2 \]

each bond has a bond order of 1/2

Dienes: 2 conjugated double bonds:

\[\text{all } \text{sp}^2 \text{ C's, each dbl bond conjugated} \]

\[\text{NOT conjugated - has } \text{sp}^3 \text{C in between, referred to as isolated} \]
simplest ex. of a conjugated diene = 1,3-butadiene:

\[\text{CH}_2=\text{CH}-\text{CH}≡\text{CH}_2 \]

Bond lengths: 1.34 Å 1.47 Å

Shorter than a normal sp²-sp³ single bond

\(\text{CH}_3-\text{CH}_3 \)

1.54 Å

Shorter due to partial double bond character in resonance

butadiene wants to adopt a planar conformation

- 2 ways:
 - S-trans: \[\rightarrow \]
 - more stable
 - lead stable

\[\Delta H = -127 \text{ kJ/mol} \]

\[\text{H}_2/\text{Pt} \]

\[\rightarrow \]

\[\Delta H = -239 \text{ kJ/mol} \]

(we expected -127x2=-254)

- Smaller \(\Delta H \) due to added stability from conjugation.

\[\text{CH}_2=\text{CH}-\text{CH}≡\text{CH}_2 + \text{HCl} \xrightarrow{\text{(eq)}} \ 	ext{CH}_2=\text{CH}-\text{CH}−\text{CH}_3 \]

major product (expected)

\[\text{H}_2-\text{Cl} \]

\[\text{Cl}^\ominus \]

\[\text{CH}_2-\text{CH}≡\text{CH}-\text{CH}_3 \]

minor prod.