I. Use VSEPR to determine the geometry of the following molecules or ions. Draw each structure showing the geometry of bonded atoms about the central atom. (12 points)

a.) PCl$_3$

b.) CO$_3^{2-}$

c.) CH$_2$CN

d.) NH$_2^-$

II. Draw another resonance form for each of the following molecules or ions. Show all bonded and nonbonded electron pairs and formal charges. (12 points)

a.) CH$_3$-C-NH$_2$ \(\leftrightarrow \) CH$_3$-C=NH$_2$

b.) CH$_3$-C=C \(\leftrightarrow \) CH$_3$-C=CH

c.)

d.) CH$_3$-C=N-O

III. Draw structures for all of the secondary alcohols with the formula C$_6$H$_{13}$OH (constitutional isomers only). Label each isomer as chiral or achiral. (18 points)

All isomers are chiral.
IV. For each pair of compounds, circle the compound with the higher boiling point. (8 points)

a.) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)

\(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)

c.) \(\text{CH}_2\text{Cl}_2 \)

\(\text{CHCl}_3 \)

b.) \(\text{CH}_3=\text{C}-\text{CH}_3 \)

\(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \)

d.) \(\text{C}=(\text{C})=\text{C} \)

\(\text{F} \)

V. Assign R or S configuration to the chiral carbons in each of the following molecules. (10 points)

a.)

\(\text{R} \)

\(\text{H}_3\text{C} \)

\(\text{C} \)

\(\text{C} \)

\(\text{OH} \)

\(\text{OH} \)

c.)

\(\text{R} \)

\(\text{NH}_2 \)

\(\text{C} \)

\(\text{C} \)

\(\text{OH} \)

\(\text{OH} \)

b.)

\(\text{S} \)

\(\text{Cl} \)

\(\text{R} \)

\(\text{Cl} \)

\(\text{H} \)

\(\text{OH} \)

\(\text{H} \)

d.)

\(\text{S} \)

\(\text{Cl} \)

\(\text{H} \)

\(\text{OH} \)

\(\text{H} \)

VI. Which of the following is a possible way to resolve a racemic mixture of lactic acid \(\text{CH}_3\text{CHCOH} \) into separate R and S enantiomers? (5 points)

a.) React the racemic mixture with an achiral amine and separate the products based on their different physical properties.

b.) React the racemic mixture with a racemic mixture of a chiral amine and separate the products based on their different physical properties.

c.) React the racemic mixture with one enantiomer of a chiral amine and separate the products based on their different physical properties.

d.) Directly separate the racemic mixture of lactic acid based on the different physical properties of R and S lactic acid.
VII. Sighting along the C2-C3 bond of 2,3-Dimethylbutane, draw Newman projections of the most stable and the least stable conformations. (10 points)

![Newman projections]

VIII. Circle the more stable isomer in each pair. (12 points)

a.) trans-1,2-Dimethylcyclohexane vs cis-1,2-Dimethylcyclohexane
b.) trans-1,3-Dimethylcyclohexane vs cis-1,3-Dimethylcyclohexane
c.) trans-1,3,5-Trimethylcyclohexane vs cis-1,3,5-Trimethylcyclohexane
d.) trans-1,4-Dimethylcyclohexane vs cis-1,4-Dimethylcyclohexane

IX. Clearly draw arrows and labels on the energy-reaction coordinate diagram shown below for each of the following. (8 points)

a.) Activation energy for the forward reaction (ΔG_f^+)
b.) Activation energy for the reverse reaction (ΔG_f^-)
c.) Free Energy of reaction (ΔG^0)
d.) Transition State

![Energy-reaction coordinate diagram]

X. The reaction shown in problem IX is: (5 points)

a.) fast, exergonic
b.) fast, endergonic
c.) slow, exergonic
d.) slow, endergonic