L24. Transition Paths III.

Transition Path Path Sampling

Qiang Cui
Chem. 860
Spring 2009

Transition State Ensemble
Transition State Ensemble

- Defined based on the **dynamics** (committor) under the **relevant condition** - much more relevant than saddle points for complex systems
Transition State Ensemble

- Defined based on the **dynamics** (committor) under the **relevant condition** - much more relevant than saddle points for complex systems

- Useful for mechanistic study: **statistical** analysis of **common** features can reveal important factors that govern the transition - much more rigorous/informative than the “q^* ensemble”
Transition State Ensemble

• Defined based on the **dynamics** (committor) under the **relevant condition** - much more relevant than saddle points for complex systems

• Useful for mechanistic study: **statistical** analysis of **common** features can reveal important factors that govern the transition - much more rigorous/informative than the “q* ensemble”

• How can we collect the TSE?
Transition State Ensemble

- Defined based on the **dynamics** (committor) under the **relevant condition** - much more relevant than saddle points for complex systems

- Useful for mechanistic study: **statistical** analysis of **common** features can reveal important factors that govern the transition - much more rigorous/informative than the “q* ensemble”

- How can we collect the TSE?

- “Answer”: collect (real-time) transition trajectories (paths) under the relevant condition
Rare events - can’t just wait and see …
Rare events - can’t just wait and see …

“Steer/target/bias” MD along a pre-chosen coordinate - too artificial.
Rare events - can’t just wait and see …

“Steer/target/bias” MD along a pre-chosen coordinate - too artificial.

Seems HARD! “Throw ropes between rough mountain passes in the dark”
Rare events - can’t just wait and see …

“Steer/target/bias” MD along a pre-chosen coordinate - too artificial.
Seems HARD! “Throw ropes between rough mountain passes in the dark”
In contrast to diffusive processes, which also take a long time to be “productive”
Transition Path Sampling (TPS): basic idea

- **Reactive** trajectories (transition paths) are rare to sample but they are **SHORT**

- **Importance** (Monte Carlo) sampling in the **reactive** trajectory space

- Need to sample trajectories with proper (relative) **weights** to gain meaningful insights and compute properties (e.g., rate constant)
Define the Transition Path ensemble

Recall in MC, we first determine the desired distribution, then design moves & acceptance rule such that detailed balance is maintained. We do the same here!
Define the Transition Path ensemble

Recall in MC, we first determine the desired **distribution**, then design **moves & acceptance** rule such that **detailed balance** is maintained. We do the same here!
Define the Transition Path ensemble

Recall in MC, we first determine the desired distribution, then design moves & acceptance rule such that detailed balance is maintained. We do the same here!

\[\mathcal{P}[\mathbf{x}(T)] = \rho(\mathbf{x}_0) \prod_{i=0}^{T/\Delta t - 1} p(\mathbf{x}_i \Delta t \rightarrow \mathbf{x}_{i+1} \Delta t) \]
Define the Transition Path ensemble

Recall in MC, we first determine the desired **distribution**, then design **moves & acceptance** rule such that **detailed balance** is maintained. We do the same here!

\[
\text{Trajectory of length } T
\]

\[
\mathcal{P}[\mathbf{x}(T)] = \rho(\mathbf{x}_0) \prod_{i=0}^{T/\Delta t-1} p(\mathbf{x}_i \Delta t \rightarrow \mathbf{x}_{(i+1)} \Delta t)
\]

Specifically for a **transition path**

\[
\mathcal{P}_{AB}[\mathbf{x}(T)] = h_A(\mathbf{x}_0) \mathcal{P}[\mathbf{x}(T)] h_B(\mathbf{x}_T) / Z_{AB}(T)
\]
Define the Transition Path ensemble

Recall in MC, we first determine the desired distribution, then design moves & acceptance rule such that detailed balance is maintained. We do the same here!

\[\text{Trajectory of length } T \]

Statistical weight for a general traj.\[
\mathcal{P}[\mathbf{x}(T)] = \rho(x_0) \prod_{i=0}^{T/\Delta t - 1} p(x_i \Delta t \rightarrow x_{i+1} \Delta t)
\]

Specifically for a transition path\[
\mathcal{P}_{AB}[\mathbf{x}(T)] = h_A(x_0) \mathcal{P}[\mathbf{x}(T)] h_B(x_T)/Z_{AB}(T)
\]

1: \(x_0 \in A \)
0: \(x_0 \not\in A \)
Define the Transition Path ensemble

Recall in MC, we first determine the desired distribution, then design moves & acceptance rule such that detailed balance is maintained. We do the same here!

\[P[\mathbf{x}(T)] = \rho(x_0) \prod_{i=0}^{T/\Delta t-1} \rho(x_i \Delta t \to x_{i+1} \Delta t) \]

Statistical weight for a general traj.

Specifically for a transition path

\[P_{AB}[\mathbf{x}(T)] = h_A(x_0) P[\mathbf{x}(T)] h_B(x_T) / Z_{AB}(T) \]

1: \(x_0 \in A \)
0: \(x_0 \not\in A \)

\[Z_{AB}(T) = \int D\mathbf{x}(T) h_A(x_0) P[\mathbf{x}(T)] h_B(x_T) \]

normalization
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution.
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution.

For the move (assuming that we start with a member of the transition path ensemble): $x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})$
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move (assuming that we start with a member of the transition path ensemble): $x^{(o)}(T) \rightarrow x^{(n)}(T)$

$$P_{AB}[x^{(o)}(T)]\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{AB}[x^{(n)}(T)]\pi[x^{(n)}(T) \rightarrow x^{(o)}(T)]$$
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move (assuming that we start with a member of the transition path ensemble): $x^{(o)}(T) \rightarrow x^{(n)}(T)$

$$\mathcal{P}_{AB}[x^{(o)}(T)]\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = \mathcal{P}_{AB}[x^{(n)}(T)]\pi[x^{(n)}(T) \rightarrow x^{(o)}(T)]$$

where
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move (assuming that we start with a member of the transition path ensemble): $x^{(o)}(T) \rightarrow x^{(n)}(T)$

$$P_{AB}[x^{(o)}(T)]\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{AB}[x^{(n)}(T)]\pi[x^{(n)}(T) \rightarrow x^{(o)}(T)]$$

where

$$\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)] \times P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)]$$
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move \textbf{(assuming} that we start with a member of the transition path ensemble\textbf{): } \mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)

\[P_{AB}[\mathbf{x}^{(o)}(T)] \pi[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)] = P_{AB}[\mathbf{x}^{(n)}(T)] \pi[\mathbf{x}^{(n)}(T) \rightarrow \mathbf{x}^{(o)}(T)] \]

where

\[\pi[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)] = P_{gen}[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)] \times P_{acc}[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)] \]

Substituting this in, rearrange - follow once again the standard MC recipe, we get the following Metropolis acceptance rule:

\[P_{acc}[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)] = \min \left[1, \frac{P_{AB}[\mathbf{x}^{(n)}(T)] P_{gen}[\mathbf{x}^{(n)}(T) \rightarrow \mathbf{x}^{(o)}(T)]}{P_{AB}[\mathbf{x}^{(o)}(T)] P_{gen}[\mathbf{x}^{(o)}(T) \rightarrow \mathbf{x}^{(n)}(T)]} \right] \]
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move (assuming that we start with a member of the transition path ensemble): \(x^{(o)}(T) \rightarrow x^{(n)}(T) \)

\[
P_{AB}[x^{(o)}(T)] \pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{AB}[x^{(n)}(T)] \pi[x^{(n)}(T) \rightarrow x^{(o)}(T)]
\]

where

\[
\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)] \times P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)]
\]

Substituting this in, rearrange - follow once again the standard MC recipe, we get the following Metropolis acceptance rule:

\[
P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)] = \min \left[1, \frac{P_{AB}[x^{(n)}(T)] P_{gen}[x^{(n)}(T) \rightarrow x^{(o)}(T)]}{P_{AB}[x^{(o)}(T)] P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)]} \right]
\]

which can be re-written as,

\[
P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)] = h_A[x^{(n)}_0] h_B[x^{(n)}_T] \times \min \left[1, \frac{P[x^{(n)}(T)] P_{gen}[x^{(n)}(T) \rightarrow x^{(o)}(T)]}{P[x^{(o)}(T)] P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)]} \right]
\]
Monte Carlo Sampling

Just like the MC approach we talked about earlier, we want to satisfy detailed balance - such that the sampling would produce the desired distribution

For the move (assuming that we start with a member of the transition path ensemble): $x^{(o)}(T) \rightarrow x^{(n)}(T)$

$\mathcal{P}_{AB}[x^{(o)}(T)]\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = \mathcal{P}_{AB}[x^{(n)}(T)]\pi[x^{(n)}(T) \rightarrow x^{(o)}(T)]$

where

$\pi[x^{(o)}(T) \rightarrow x^{(n)}(T)] = P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)] \times P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)]$

Substituting this in, rearrange - follow once again the standard MC recipe, we get the following Metropolis acceptance rule:

$$P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)] = \min \left[1, \frac{\mathcal{P}_{AB}[x^{(n)}(T)] P_{gen}[x^{(n)}(T) \rightarrow x^{(o)}(T)]}{\mathcal{P}_{AB}[x^{(o)}(T)] P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)]} \right]$$

which can be re-written as,

$$P_{acc}[x^{(o)}(T) \rightarrow x^{(n)}(T)] = h_A[x^{(1)}_0 h_B[x^{(n)}_T] \times \min \left[1, \frac{\mathcal{P}[x^{(n)}(T)] P_{gen}[x^{(n)}(T) \rightarrow x^{(o)}(T)]}{\mathcal{P}[x^{(o)}(T)] P_{gen}[x^{(o)}(T) \rightarrow x^{(n)}(T)]} \right]$$
A simple procedure

1. Generate a new pathway $x^{(n)}(T)$ from the existing one, $x^{(o)}(T)$, with generation probability $P_{\text{gen}}(x^{(o)}(T) \rightarrow x^{(n)}(T))$.

2. Accept or reject the new pathway according to a Metropolis acceptance criterion obeying detailed balance with respect to the transition path ensemble $\mathcal{P}_{AB}[x(T)]$.

3. If the new trajectory is accepted, it becomes the current one. Otherwise the old trajectory is retained as the current trajectory again.

4. Repeat starting from 1.

Need: 1. Move type and the corresponding generation probability. 2. Explicit expression for the acceptance probability.
A simple procedure

1. Given
2. Accept $V(x)$
3. If true
4. Repeat

Need: 1. Move type and the corresponding generation probability. 2. Explicit expression for the acceptance probability.
A simple procedure

1. Generate type and the corresponding generation probability.
2. Explicit expression for the
 acceptance probability.
3. If trajectory $V(x)$
4. Repeat one, $x^{(o)}(T)$,

In this way, we sample the transition paths with LARGE statistical weights!
A simple procedure

1. Generate a new pathway \(x^{(n)}(T) \) from the existing one, \(x^{(o)}(T) \), with generation probability \(P_{\text{gen}}(x^{(o)}(T) \rightarrow x^{(n)}(T)) \).

2. Accept or reject the new pathway according to a Metropolis acceptance criterion obeying detailed balance with respect to the transition path ensemble \(\mathcal{P}_{AB}[x(T)] \).

3. If the new trajectory is accepted, it becomes the current one. Otherwise the old trajectory is retained as the current trajectory again.

4. Repeat starting from 1.

Need: 1. Move type and the corresponding generation probability. 2. Explicit expression for the acceptance probability.

In this way, we sample the transition paths with **LARGE** statistical weights!
Example: Shooting move

\[P_{\text{gen}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})] = p_{\text{gen}}[x^{(o)}_{t'} \rightarrow x^{(n)}_{t'}] \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t-1} p(x^{(n)}_{i\Delta t} \rightarrow x^{(n)}_{(i+1)\Delta t}) \]

\[\times \prod_{i=t'/\Delta t}^{t'/\Delta t} \bar{p}(x^{(n)}_{i\Delta t} \rightarrow x^{(n)}_{(i-1)\Delta t}) \cdot \]

\[P_{\text{acc}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})] = h_A[x^{(n)}_0] h_B[x^{(n)}_{\mathcal{T}}] \times \min \left[1, \frac{P[x^{(n)}(\mathcal{T})]}{P[x^{(o)}(\mathcal{T})]} \frac{P_{\text{gen}}[x^{(n)}(\mathcal{T}) \rightarrow x^{(o)}(\mathcal{T})]}{P_{\text{gen}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})]} \right] \]
Example: Shooting move

Under specific conditions (reversible integration, stationary state, initial condition in equilibrium, symmetric generation probability) one can show that the acceptance probability is simplified:

\[
P_{\text{gen}}[x^{(o)}(T) \to x^{(n)}(T)] = p_{\text{gen}}[x^{(o)}_{t'} \to x^{(n)}_{t'}] \prod_{i=t'/\Delta t}^{T/\Delta t-1} p \left(x^{(n)}_{i\Delta t} \to x^{(n)}_{(i+1)\Delta t} \right) \\
\times \prod_{i=1}^{t'/\Delta t} \tilde{p} \left(x^{(n)}_{i\Delta t} \to x^{(n)}_{(i-1)\Delta t} \right).
\]
Example: Shooting move

\[P_{\text{gen}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})] = P_{\text{gen}}[x_{t'}^{(o)} \rightarrow x_{t'}^{(n)}] \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t - 1} p(x_{i\Delta t}^{(n)} \rightarrow x_{(i+1)\Delta t}^{(n)}) \]

\[\times \prod_{i=1}^{t'/\Delta t} \bar{p} \left(x_{i\Delta t}^{(n)} \rightarrow x_{(i-1)\Delta t}^{(n)} \right). \]

Under specific conditions (reversible integration, stationary state, initial condition in equilibrium, symmetric generation probability) one can show that the acceptance probability is simplified:

\[P_{\text{acc}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})] = h_A[x_0^{(n)}] h_B[x_T^{(n)}] \min \left[1, \frac{\rho(x_{t'}^{(n)})}{\rho(x_{t'}^{(o)})} \right] \]
The efficiency of sampling depends on the magnitude of perturbation - or, acceptance ratio. Model studies indicate that acceptance ratio of 40% is reasonable.

\[
P_{\text{acc}}[x^{(o)}(\mathcal{T}) \rightarrow x^{(n)}(\mathcal{T})] = h_A[x^{(n)}_0] h_B[x^{(n)}_\mathcal{T}] \min \left[1, \frac{\rho(x^{(n)}_t)}{\rho(x^{(o)}_t)} \right]
\]

1. Randomly select a time slice \(x^{(o)}_t \) on a existing trajectory \(x^{(o)}(\mathcal{T}) \).

2. Modify the selected time slice by adding a random displacement: \(x^{(n)}_t = x^{(o)}_t + \delta x \). The random displacement must be consistent with the ensemble of initial conditions and should be symmetric with respect to the reverse move.

3. Accept the new shooting point with probability \(\min[1, \rho(x^{(n)}_t)/\rho(x^{(o)}_t)] \). Abort the trial move if the shooting point is rejected.

4. If the shooting point is accepted, integrate the equations of motion forward to time \(\mathcal{T} \) starting from \(x^{(n)}_t \).

5. Abort the trial move if the final point of the path segment, \(x^{(n)}_{\mathcal{T}} \), is not in \(B \) and continue otherwise.

6. Integrate the equations of motion backward to time \(0 \) starting from \(x^{(n)}_t \).

7. Accept the new trajectory if its initial point \(x^{(n)}_0 \) is in \(A \) and reject it otherwise.

8. In case of a rejection the old trajectory is counted again in the calculation of path averages. Otherwise the new trajectory is used as the current one.
A few other practical issues

- Other move types (e.g., shift etc.), sampling tricks (parallel-T)
- Definition for the A/B basin
- The first trajectory (high-T/steering, then equilibrate)
- Length of trajectories T (larger than the max. transition time)
- Analysis of the results

$$\mathcal{P}_{AB}[x(T)] = h_A(x_0)\mathcal{P}[x(T)]h_B(x_T)/Z_{AB}(T)$$

Only need a good order parameter and range for TPS

![Diagram](image.png)
Example: Water autoionization

Reac. region

30fs

60fs

Prod. region

TS region

Key: coincidence of rare & collective solvent fluctuations (ionization & H-bond rearrangement)

Real-time: 10 hrs. TPS time: 200 fs (CPMD) Order-parameter: $l=0$ (neutral) $l \geq 3$ (ionic)
Critical solvent fluctuations

A

B

C

$E - E_{\text{neut}} \ (\text{kcal/mol})$

q

q

q

$E - E_{\text{neut}} \ (\text{kcal/mol})$

q

q