Supercids

The Superacid HBr/AlBr₃: Protonation of Benzene and Ordered Crystal Structure of [C₆H₇]⁺[Al₂Br₇]⁻

Franziska Scholz, Daniel Himmel, Lea Eisele, Wiebke Unkrig, and Ingo Krossing*

Abstract: Crystalline and properly ordered protonated benzene as the [C₆H₇]⁺[Al₂Br₇]⁻·(C₆H₆) salt I are obtained by the combination of solid AlBr₃, benzene, and HBr gas. Compound I was characterized and verified by NMR, Raman and X-Ray spectroscopy. This unexpected simple and straightforward access shows that HBr/AlBr₃ is an underestimated superacid that should be used more frequently.

Arenium ions, commonly called Wheland intermediates, but more correctly ascribed to Pfeiffer and Wizinger,[2] are widely accepted to be intermediates in electrophilic aromatic substitution reactions. First spectroscopic evidence for the protonation of an aromatic hydrocarbon was reported by Gold and Tye for anthracene,[3] and by Reid for alkylbenzenes.[4] Later protonated aromatic hydrocarbons were observed in classical superacidic media.[5] Stable arenium ion salts were first isolated with electron-donating groups, for example [C₆(CH₃)₇]⁺[Al₂Br₇]·(CH₂Br₂).[19] Thus we were interested to see, if the HBr/AlBr₃ system was also able to stabilize an ordered structure of a non-substituted benzenium ion salt. Indeed, this was possible and herein we present the well-ordered crystal structure of protonated benzene as its benzene solvate [C₆H₇]⁺[Al₂Br₇]·(C₆H₆) (I).

AlBr₃ is moderately soluble in HBr, but its solubility increases by addition of aromatic or aliphatic hydrocarbons leading to deeply colored oily liquids of high density.[20] Earlier NMR work showed that HBr/AlBr₃ and, to a lesser extent, also HCl/AlCl₃ protonate weak bases such as mesitylene, and even benzene,[21–23] which is 10⁹ times less basic than mesitylene.[24] However, no isolation of any crystalline—even of a substituted—benzenium ion salt in this system was reported to date.¹³C NMR studies suggested that the HBr/AlBr₃ system completely protonates benzene at AlBr₃/benzene ratios of 2:1 or higher and a HBr ratio of 4 mole per mole AlBr₃.[22,23] Although it was reported that transparent crystalline cubes were separated, no crystal structure could be obtained. Based on this knowledge, we prepared mixtures with the following stoichiometric ratios: AlBr₃/benzene:HBr 1:1:1 (Mix 1), 2:1:3 (Mix 2), and 2:1:9 (Mix 3). From repeated efforts on Mix 3 no crystals could be isolated. Mix 2 reproducibly led to transparent cubic crystals, similar to those described in Ref. [23]. According to our Raman measurements as well as an X-ray single crystal structure determination, these crystals are solid AlBr₃. Only from Mix 1 (1:1:1 ratio), were colorless crystals with the composition [C₆H₇]⁺[Al₂Br₇]⁻·(C₆H₆) I reproducibly obtained after storage for 3 to 4 days at 0°C [Eq. (1)].

Our NMR spectroscopic investigations of the neat liquid Mix 1 suggest the presence of an estimated 30% fraction of the [C₆H₇]⁺ ion. The results are in line with a rapid equilibrium of sigma C₆H₆ structures as in earlier reports[22,23].

Although solid-state NMR and IR studies of [C₆H₇]⁺[CB₁₁HMe₅Br₆]⁺ and [C₆H₇]⁺[C₂H₅HMePenBr₆]⁺ were carried out, only the X-ray crystal structures of the [C₆H₇]⁺ salt with the [CB₁₁HMe₅Br₆]⁺ ion were published, containing a highly disordered benzenium ion which meant that it was not possible to differentiate between the three alternatives shown in Scheme 1.[13–15] Thus, crystallographic evidence for the preference of the α-structure in the solid state is still missing.

Recently, we turned our attention to the HBr/AlBr₃ system: By combination of the Brønsted acid HBr with the Lewis superacid AlBr₃,[16] Brønsted superacidity can be reached.[17] This system allowed X-ray crystallographic structure determinations of delicate protonated compounds, such as the tert-butyl cation as its [Al₂Br₇]⁺ salt, which is a room-temperature ionic liquid,[18] or even the non-classical 2-norbornyl cation salt [C₆H₇]⁺[Al₂Br₇]⁻·(CH₂Br₂).[19] Thus we were interested to see, if the HBr/AlBr₃ system was also able to stabilize an ordered structure of a non-substituted benzenium ion salt. Indeed, this was possible and herein we present the well-ordered crystal structure of protonated benzene as its benzene solvate [C₆H₇]⁺[Al₂Br₇]⁻·(C₆H₆) (I).

Scheme 1. [C₆H₇]⁺ structures: α- (left, C₆ symmetry), bridged π- (middle, C₅), and face-centered π-structure (right, C₆).

[1] Dipl.-Chem. F. Scholz, Dr. D. Himmel, B. Sc. L. Eisele, B. Sc. W. Unkrig, Prof. Dr. I. Krossing Institut für Anorganische und Analytische Chemie, Freiburger Materialforschungszentrum (FMF) und Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg Albertstr. 19, 79104 Freiburg (Germany)
E-mail: krossing@uni-freiburg.de

[2] We are grateful to Dr. Daniel Kratzert for crystallographic discussions and support. This work was supported by the FRIAS, the DFG, the University of Freiburg and the ERC project UniChem.

Supporting information for this article (detailed descriptions of the quantum chemical calculations, further experimental procedures, a full table with calculated and experimental vibrational frequencies, crystallographic tables etc.) is available on the WWW under http://dx.doi.org/10.1002/anie.201308120.
and is not discussed in detail herein. A more detailed discussion and more data are available in the Supporting Information. After about 2 h at room temperature, the liquid Mix 1 turns to a dark yellow brown, which indicates decomposition reactions. The most characteristic vibrational modes of the benzenium ion are the methylene stretching vibrations \(\nu_{\text{a}}(\text{CH}_2) \) and \(\nu_{\text{c}}(\text{CH}_2) \) that are almost degenerate. For crystalline \(1 \) they resonate at 2852 cm\(^{-1}\) and are clearly visible in the low-temperature Raman Spectrum at \(-196^\circ\text{C}\) (see Supporting Information).

The solid-state structure of \(1 \) was determined with X-ray diffraction methods at 100 K. Figure 1a shows the asymmetric unit of the molecular structure of \(1 \) (\(P2_1/n \), \(R_1 = 3.23\% \), \(wR_2 = 6.97\% \)). The positions of all the hydrogen atoms were found in the difference Fourier map and the hydrogen positions were allowed to refine freely with a same-distance restraint for all C–H distances. The structural details of the dimeric [Al\(_2\)Br\(_7\)]\(^+\) ion are close to those found in K[Al\(_2\)Br\(_7\)]\(^-\) [26] NH\(_4\)[Al\(_2\)Br\(_7\)] [27] and [C(CH\(_3\))\(_3\)]\(^+\) [Al\(_2\)Br\(_7\)]\(^-\) [18]. The asymmetric unit of \(1 \) includes protonated benzene and one molecule of co-crystallized neutral benzene that is located at a special position. The structural parameters of \(1 \) and for comparison those of a disordered and a calculated structure are included with Table 1.

The C–C distances of the neutral benzene molecule are indistinguishable within the standard deviation and average to \(1.377(7) \) Å. This is in fine agreement with literature [22]. The benzenium ion is planar and the C–C–C bond angles range from \(117.9(5) \) to \(122.8(6) \)°. The C–C distances around C2, C3, C4, C5, and C6 are consistent with a delocalized electronic structure related to a pentadienyl cation moiety and average within \(3.0 \) to \(3.178(8) \) Å. The C1–C2 and C1–C6 bond lengths to the protonated carbon atom C1 of \(1.423(8) \) and \(1.419(8) \) Å are longer, but considerably shortened if compared to the sp\(^3\)–sp\(^3\) bond of 1.51 Å in CH\(_2\)(Ph)\(_2\) [29] and to a C–C single bond (1.54 Å). In contrast the structure determined for [C\(_6\)H\(_7\)]\(^+\) [HCB\(_11\)(CH\(_3\))\(_5\)Br\(_6\)]\(^-\) (included in Table 1) shows a complete disorder of the cation. [44] Whereas, all the observed C–C distances and C–C–C bond angles of [C\(_6\)H\(_7\)]\(^+\) in \(1 \) are in good agreement with the calculated MP2/def2-QZVPP data. Thus, to our knowledge \(1 \) contains the first well-ordered structure of the benzenium ion. The minimum C–C distances between the [C\(_6\)H\(_7\)]\(^+\) ion and the co-crystallized benzene molecules are 3.295 and 3.514 Å and lie close to the sum of the van der Waals radii (3.4 Å) [30] as also follows from the visualization of the cation with the Hirshfeld surface (Figure 1c). The sandwiched structure of one of the benzene molecules (C9, C8, and C7) and the benzenium ion is in accordance with an \(\eta^2 \) to \(\pi^2 \)-inter-ring interaction. The benzene molecule is slightly tilted towards the direction of the methylene group, slightly reducing the \(\pi-\pi \) stacking interaction (see Figure 1b). The averaged H–Br contact distance between cation and anion is 2.914 Å and lies a bit below the sum of the van der Waals radii (3.05 Å) [30].

To investigate the reaction thermodynamics leading to solid \(1 \), we constructed a Born–Fajans–Haber cycle (Scheme 2) by combining lattice-energy calculations with highly correlated quantum chemical calculations (see Supporting Information for details) [32]. Lattice Gibbs energies/enthalpies were calculated with an approach developed for ionic liquids in our group [33]. According to this cycle, the reaction of benzene with solid AlBr\(_3\) and the formation of solid non-solvated [C\(_6\)H\(_7\)]\(^+\) [Al\(_2\)Br\(_7\)]\(^-\) was calculated to be slightly exergonic. The main driving force for the reaction is the gain of lattice energy in the condensed solid phase. The gas-phase reaction is energetically very disfavored because of charge separation. The observed more favorable formation of the benzene-solvated compound \(1 \) compared to the non-solvated one in the cycle may be attributed to the energy gain through additional C–H–π and π–π stacking interactions of benzene and protonated benzene, which cannot be considered in the calculation of the lattice energies.

The superacidic medium HBr/AlBr\(_3\) is also able to stabilize pro-

\[\text{AlBr}_3 + \text{HBr} \rightarrow \text{AlBr}_4^- + \text{H}^+ \]
Comparison of bond lengths [Å] and angles [°] of [C6H7]+ as its [AlBr3]− salt with the disordered [C6H7]+ [HCB11(CH3)5Br6] salt and the ab initio calculation (C6 symmetry, MP2/dez2-QZVPP).

<table>
<thead>
<tr>
<th>Bond lengths [Å]:</th>
<th>C1-C2</th>
<th>C2-C3</th>
<th>C3-C4</th>
<th>C4-C5</th>
<th>C5-C6</th>
<th>C6-C1</th>
<th>C1-C2-C3</th>
<th>C2-C3-C4</th>
<th>C3-C4-C5</th>
<th>C4-C5-C6</th>
<th>C5-C6-C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6H7+ (cald)</td>
<td>1.423 (8)</td>
<td>1.386 (8)</td>
<td>1.381 (7)</td>
<td>1.382 (8)</td>
<td>1.361 (8)</td>
<td>1.419 (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6H7+ [HCB11(CH3)5Br6]−</td>
<td>1.456</td>
<td>1.370</td>
<td>1.403</td>
<td>1.403</td>
<td>1.370</td>
<td>1.456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles [°]:</th>
<th>C6-C1-C2</th>
<th>C1-C2-C3</th>
<th>C2-C3-C4</th>
<th>C3-C4-C5</th>
<th>C4-C5-C6</th>
<th>C5-C6-C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6H7+ (cald)</td>
<td>117.9 (5)</td>
<td>120.5 (5)</td>
<td>118.5 (5)</td>
<td>122.8 (6)</td>
<td>119.1 (5)</td>
<td>121.2 (5)</td>
</tr>
<tr>
<td>C6H7+ [HCB11(CH3)5Br6]−</td>
<td>119.8 (3)</td>
<td>120.1 (3)</td>
<td>119.8 (3)</td>
<td>120.1 (3)</td>
<td>119.8 (3)</td>
<td>120.1 (3)</td>
</tr>
</tbody>
</table>

Scheme 2. Born–Fajans–Haber cycle to assess the Gibbs reaction energy in kJ mol⁻¹ at 298 K, 1 bar. [a] experimental value, [b] calculated value from experimental values [34] and a ccsd(t)/MP2 compound method (see Supporting Information for details), [c] calculated value (see Supporting Information for details); (g) gaseous, (s) solid.

Table 1: Comparison of bond lengths [Å] and angles [°] of [C6H7]+ as its [AlBr3]− salt with the disordered [C6H7]+ [HCB11(CH3)5Br6] salt and the ab initio calculation (C6 symmetry, MP2/dez2-QZVPP).

Experimental Section

Techniques and instruments: All reactions were carried out in an inert atmosphere using standard vacuum and Schlenk techniques or a glove box. Special NMR tubes (J. Young) and special Schlenk flasks sealed at atmosphere using standard vacuum and Schlenk techniques or a glove box. All reactions were carried out in an inert atmosphere.

Benzene was dried over CaH₂ and distilled afterwards. Benzene was washed with H₂SO₄ to remove tiophene, and then dried over CaH₂. All solvents were dried over CaH₂ and distilled afterwards. Benzene was washed with H₂SO₄ to remove tiophene, and then dried over CaH₂. NMR spectra were recorded unlocked at room temperature on a Bruker Biospin Avance II 400 MHz WB spectrometer and the ab initio calculation (C6 symmetry, MP2/dez2-QZVPP).

Received: September 16, 2013
Published online: January 22, 2014

Keywords: arene · carbocation · protonation · superacid · weakly coordinating anions
