Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan’s atmosphere

X. Gu, Y. S. Kim, R. I. Kaiser, A. M. Mebel, M. C. Liang, and Y. L. Yung

Chemical evolution of the atmosphere of Saturn’s moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present results from a combined experimental, theoretical, and modeling study on the synthesis of the polyacetylene triacetylene via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan’s atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene.

Results and Discussion

Reaction 1 was studied under single collision conditions in the gas phase using the crossed molecular beam approach by crossing a supersonic beam of D1-ethynyl radicals [C\textsubscript{2}H\textsubscript{1} \times \Sigma^+; X = D, H] with diacetylene [H\textsubscript{2}C\textsubscript{2}H\textsubscript{2}; X = D, H]. The neutral reaction products were ionized via electron impact and mass- and velocity-analyzed in a triply differentially pumped quadrupole mass spectrometer to record TOF spectra of the ionized neutral molecules at distinct laboratory angles. Details of the experimental setup are described in Materials and Methods. In our experiments, we monitored signal at mass-to-charge ratios of m/z = 75 and 74. TOF data at m/z = 75 could be fit with a single reaction channel of the mass combination of 75 atomic mass units (C\textsubscript{5}D\textsubscript{4}H and 1 atomic mass unit (C\textsubscript{6}H\textsubscript{2}) (Fig. 1). The signal at m/z = 74 had to be fit with two contributions: dissociative ionization of the C\textsubscript{6}H\textsubscript{2} parent yielding D\textsubscript{2}C\textsubscript{2}H\textsubscript{2} and a second channel originating from inelastic scattering. The reactive scattering signal at m/z = 75 and m/z = 74 could be fit with identical center-of-mass (CM) functions as depicted below [the CM functions obtained for the m/z = 74 (C\textsubscript{6}H\textsubscript{2})].

This system represents the prototype reaction of photolytically generated atmospheric ethynyl radicals in Titan with the simplest polyacetylene species, diacetylene, to form triacetylene via a single collision event. A coupling of the laboratory experiments with electronic structure calculations and photochemical reaction networks not only combines experiments with theory, but also links the microscopic, single collision scale to the macroscopic setting of Saturn’s moon Titan.

Edited by William Klemperer, Harvard University, Cambridge, MA, and approved August 12, 2009 (received for review January 16, 2009)

Armed with the results of our study, we are now in a position to discuss the implications of this elementary reaction to the synthesis of more complex polyynes and their contribution to Titan’s hydrocarbon chemistry (reaction 1).

Therefore, an experimental investigation of these elementary reactions under single collision conditions is desirable (16–18).

In this article, we report the results of a crossed molecular beam reaction of the isotope variant of the elementary reaction of ethynyl radicals (C\textsubscript{2}H\textsubscript{1} \times \Sigma^+; X = D, H) with diacetylene (C\textsubscript{2}H\textsubscript{2}; X = D, H). These results are combined with electronic structure calculations and photochemical modeling to unravel the formation and role of the organic transient molecule triacetylene (C\textsubscript{6}H\textsubscript{2}; X = D, H) in the formation of more complex polyynes and their contribution to Titan’s hydrocarbon chemistry (reaction 1).

\[
\begin{align*}
\text{C}_2\text{D}(X\Sigma^+) + \text{H} &\rightarrow \text{C} = \text{C} = \text{C} = \text{H}(X\Sigma^+) + \text{H}.
\end{align*}
\]

This article contains supporting information online at www.pnas.org/cgi/content/full/0900525106/DCSupplemental.

Author contributions: R.I.K. and A.M.M. designed research; X.G., Y.S.K., A.M.M., M.C.L., and Y.L.Y. performed research; and R.I.K. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: ralk@hawaii.edu.
inelastically scattered diacetylene dimers are presented in SI Text, Fig. S1, and Fig. S2] (18); this finding suggests that, within the experimental uncertainties, the molecular hydrogen channel leading to a C_6D and/or C_6H_2 molecule via molecular hydrogen and/or a deuterium atom ejection is closed. Summarized, the analysis of the TOF spectra indicates the formation of a molecule of the formula C_6H_2D plus a light hydrogen atom in the crossed beams reaction of the D1-ethynyl radical with diacetylene.

We also investigated the chemical dynamics of the reaction, because this procedure assists unraveling the nature of the C_6HD product isomer and the intermediates formed. The information on the chemical dynamics are extracted by transforming the laboratory data (TOF spectra and laboratory angular distribution; Figs. 1 and 2, respectively) into the CM coordinate system to yield a CM product flux contour map (Fig. 3) (19). The plot reports the differential cross section, $I(\theta_{CM})$, as a function of product CM scattering angle θ and velocity u; the flux contour plot is proportional to the product of the CM angular distribution, $T(\theta)$, and the CM velocity distribution, $P(u)$, which in turn is computed from the CM translational energy distribution, $P(E_T)$. The flux contour map, $I(\theta_{CM})$, can be seen as an image of the reaction, and holds all of the information of the reactive scattering process. First, an inspection of the CM translational energy distribution allows computing the reaction energy and, thus, helps to elucidate the nature of the C_6HD isomer formed. The maximum translational energy, E_{max}, released into the products represents the sum of the collision energy, E_c, and the absolute of the reaction energy, ΔG. Therefore, by subtracting the collision energy ($E_c = 40.2 \pm 2.0$ kJ mol$^{-1}$) from the maximum amount of translational energy ($E_{max} = 160 \pm 14$ kJ mol$^{-1}$), we can compute the reaction exoergicity to be 120 ± 16 kJ mol$^{-1}$. These data agree very well with our ab initio data of 125 ± 5 kJ mol$^{-1}$ to form the D1-triacetylene isomer (HC-CCCCCD) plus atomic hydrogen (H). Second, the translational energy distribution peaks away from zero translational energy at $\sim 35 \pm 5$ kJ mol$^{-1}$. This finding indicates that the exit transition state is likely to be tight and involves a significant electron rearrangement from the decomposing intermediate to the final D1-triacetylene plus hydrogen atom products; in other words, the reversed reaction of a hydrogen atom addition to D1-triacetylene involves an entrance barrier. Third, the CM angular distribution, $T(\theta)$, shows intensity over the complete angular range from 0° to 180°. This pattern is characteristic of an indirect reaction mechanism, i.e., the formation of a C_6H_2D reaction intermediate, which decomposes via atomic hydrogen loss to form D1-triacetylene. Also, the CM flux contour plot is slightly forward scattered with respect to the D1-ethynyl beam, indicating that the lifetime of the reaction intermediate is less than its rotational period (20). In a molecular beams experiment, the rotational period can be used as a clock to estimate the lifetime of the decomposing complex. Based on the intensity of the poles of $I(0°)/I(180°) = 2.5_{-0.5}^{+0.5}$, the lifetime of the fragmenting C_6H_2D intermediate can be approximated to be $0.55_{-0.13}^{+0.17}$ of its rotational period (21).

To elucidate the reaction mechanism, we are merging now our experimental findings with our electronic structure calculations of the reaction of D1-ethynyl (CCD) with diacetylene (HC-CCH) (Fig. 4). Our computations verify the experimental results of an indirect reaction mechanism involving C_6H_2D reaction intermediate(s). Here, the reaction is initiated by a barrierless addition of the D1-ethynyl radical with its radical center to the C1 and/or C2 carbon atom of the diacetylene molecule yielding intermediates [1] and [3], respectively. The barrierless addition was verified by a careful examination of the potential energy surface in the entrance channel, which indicates that the potential energy of the system steadily and monotonically decreases as the ethynyl radical approaches diacetylene (22). Intermediates [1] and [3] are bound by 294 and 226 kJ mol$^{-1}$ with respect to the separated reactants. Structure [2] connects [1] and [3] via a D1-ethynyl group shift from the diacetylenic C2 to the C1 carbon atom. The calculations identify the C_6H_2D structure [1] as the decomposing intermediate, which emits atomic hydrogen. The computationally found tight exit transition state, which ranges ~ 21 kJ mol$^{-1}$ above the separated D1-triacetylene and atomic hydrogen products, was predicted experimentally based on the off-zero peaking of the CM translational energy distribution (Fig. 3). A comparison of the geometries of [1] and the final triacetylene product verifies the electronic reorganization involved in this process and, thus, the
expected tight exit transition state. Last, the overall reaction was computed to be exoergic by 125 ± 5 kJ·mol⁻¹. These data agrees with the experimentally derived value of 120 ± 16 kJ·mol⁻¹ to form D1-triacetylene plus atomic hydrogen. It should be stressed that the second lowest energy isomer of C₆H₂, i.e., the carbene structure CCCCCCH₂, is at least 210 kJ·mol⁻¹ less stable than triacetylene (23), and thus, can neither be formed in our experiments nor under conditions prevailing in Titan’s atmosphere. Are there other feasible exit channels? The competing direct hydrogen abstraction pathway to form acetylene (C₂H₂) plus the 1,3-butadiynyl radical (C₃H) involves a barrier of ~38 kJ·mol⁻¹. Likewise, the molecular hydrogen elimination channel to form the 1,3,5-hexatriynyl radical (C₆H) is endoergic by 8 kJ·mol⁻¹. Considering the low temperatures in Titan’s atmosphere of 94 to 200 K, both the hydrogen abstraction and the molecular hydrogen loss pathways are closed.

We transfer now our findings from the laboratory to the atmosphere of Saturn’s moon Titan. The crossed beam reactions revealed that under single collision conditions, the exoergic reaction of ethynyl radicals with diacetylene can form triacetylene. As suggested computationally, this process has no entrance barrier. The absence of an entrance barrier presents a crucial prerequisite for a chemical reaction to be feasible under the extreme low temperature conditions in Titan’s atmosphere (94 to 200 K). These low temperatures typically block reactions that either have a significant entrance barrier or that are endoergic; therefore, chemically relevant reactions must be exoergic, proceed without entrance barrier, and must only involve transition states that are lower than the energy of the separated reactants. All these criteria are fulfilled in the bimolecular reaction of ethynyl radicals with diacetylene. We would like to outline that our experimental collision energies are higher than the equivalent temperature conditions in Titan’s atmosphere. Does this difference have any effect on the implications of the formation of triacetylene on Titan? We have combined our experiments with electronic structure calculations. The basic conclusions are
that triacetylene can be formed in Titan’s atmosphere in the prevailing temperature range and also under our experimental conditions. As a matter of fact, in the low temperature atmosphere of Titan, triacetylene is the only reaction product, because our computations suggested that the hydrogen abstraction and molecular hydrogen elimination pathways are closed. However, at higher temperatures and/or collision energies, additional pathways can open up, if the barrier to hydrogen abstraction (forming 1,3-butadiynyl plus ethynyl) or if the endothermicity of the molecular hydrogen loss (yielding 1,3,5-hexatriynyl) can be overcome. Nevertheless, the reaction mechanism to form triacetylene does not change with temperature and/or collision energy, and involves indirect scattering dynamics via addition of the ethynyl radical to the diacetylene molecule followed by hydrogen atom emission through a tight exit transition state.

The implementation of the reaction of ethynyl radicals with diacetylene into a photochemical model of Titan’s atmosphere requires two input parameters: the reaction products, i.e., triacetylene plus atomic hydrogen, and rate constants. A literature research failed to provide any rate constants for the ethynyl–diacetylene system. Due to the absence of any experimental data, we incorporated computed rate constants of 1.5 ± 0.5 × 10^{-10} cm^3 s^{-1} to form triacetylene plus atomic hydrogen into the model (22). Over the temperature range of 94 to 200 K, the rate constants are (within the error limits) temperature independent. This finding is characteristic of an exothermic reaction, which has no entrance barrier and which is dictated by attractive, long range forces (20). It should be noted that the computed rate constants hold a similar value as those experimentally determined for the related reaction of ethynyl radicals with acetylene yielding diacetylene plus atomic hydrogen (24, 25). Our models suggest that polyynes of the generic formula C\textsubscript{n}H\textsubscript{2n} (n ≥ 2) can be readily formed in the atmosphere of Titan via reactions of ethynyl (C\textsubscript{2}H) and 1,3-butadiynyl radicals (C\textsubscript{4}H\textsubscript{3}) with (poly)acetylene molecules (C\textsubscript{2}H\textsubscript{2}) such as acetylene, diacetylene, and triacetylene (reactions 2 and 3). The mechanisms consist of two steps: the photolysis of the precursor like acetylene and diacetylene (reactions 2a and 3a) and a propagation of the long-chain polyyne (reactions 2b and 3b) leading effectively to a polyyne extension plus two hydrogen atoms (reactions 2c and 3c) with n = 1, 2, 3… The propagation of the chain is facilitated by two factors: the lack of reaction barriers such as discussed in this article for the reaction of ethynyl with diacetylene, and the escape of hydrogen atoms from the atmosphere of Titan as a consequence of its low gravity. Quantitatively spoken, the photochemical models predict abundances relative to acetylene of [C\textsubscript{2}H\textsubscript{2}]/[C\textsubscript{4}H\textsubscript{2}], [C\textsubscript{4}H\textsubscript{2}]/[C\textsubscript{6}H\textsubscript{6}], and [C\textsubscript{6}H\textsubscript{6}]/[C\textsubscript{8}H\textsubscript{6}] to be ~10^{-2} (Fig. 5). This model nicely simulates the abundances of diacetylene and acetylene in the neutral region of the atmosphere as
observed by Cassini–Huygens probe (17, 26). The production of the polynes via reactions 2 and 3 is significant throughout the entire atmosphere because of the photolysis of higher order polynes such as diacetylene mainly by UV photons with wavelengths between 120 and 250 nm, where there is no or little shielding by the major constituents of Titan’s atmosphere, i.e., molecular hydrogen (H₂), molecular nitrogen (N₂), or methane (CH₄). The photodissociation is followed by subsequent reactions of polynye radicals like 1,3-butadiynyl (C₃H₄) to higher-order polynes (reaction 3). Because the photodissociation cross sections and quantum yields for the photolysis of diacetylene (C₂H₂) and triacetylene (C₃H₆) and the rate constants for the reaction of the polyne radicals are similar, the vertical profiles of diacetylene and triacetylene depict alike pattern. The larger abundance of tetracyacetylene (C₄H₄) compared with diacetylene and triacetylene is based on the lower photodissociation cross section of tetracyacetylene (17). Above the homopause (~800 km), molecular separation becomes important, and their mixing ratios drop off exponentially with altitude.

C₂H₂ + hν → C≡CH + H \[2a\]
C₂H₂ + C₂H₂ → C₃H₄ + H \[2b\]
C₂H₂ + C₂H₂ → C₄H₄ + 2H \[2c\]
C₄H₄ + hν → C≡CH + H + H \[2d\]
C₄H₄ + C₂H₂ → C₅H₈ + H \[2e\]
C₅H₈ + C₂H₂ → C₆H₁₀ + 2H \[2f\]

To summarize, we have identified D1-triacetylene as the reaction product under single collision conditions in the reaction of D1-ethyl radicals with diacetylene. The reaction exhibits an entrance barrier, is exothermic, and all transition states that are involved are below the energy of the reactant molecules. Due to these characteristics, the elementary reaction of the ethynyl radical with diacetylene represents an efficient pathway to produce triacetylene in Titan’s atmosphere in those regions where density profiles of photolytically generated ethynyl radicals and diacetylene overlap. Note that the ion and neutral mass spectrometer (INMS) on board the Cassini spacecraft conducted the first composition measurements of Titan’s ionosphere (27). These measurements are crucial to constrain the composition and density of minor neutral molecules formed via proton transfer processes. Here, signal in the INMS at, for example, m/z = 75 suggests the existence of a C₆H₄⁺ cation, formed via proton transfer to a hitherto unobserved triacetylene molecule (27). Therefore, our laboratory results suggest that the neutral triacetylene molecule is expected to be present in Titan’s atmosphere as well. Our models of Titan’s atmosphere indicate that successive reactions of the triacetylene molecule can yield even more complex polynes. Here, ethynyl radicals (CCH) or 1,4-butadiynyl radicals (HCCCC), formed via photodissociation of acetylene and diacetylene, respectively (28), may react with triacetylene to tetracyacetylene (C₃H₆) and pentaacetylene (C₅H₈), respectively. This result offers important sinks for triacetylene and produces potential polyyne precursors for the organic aerosol layers. We hope that our combined experimental, theoretical, and modeling study will act as a template and trigger much needed, successive investigation of the chemistry of triacetylene and tetracyacetylene and more complex systems under single collision conditions so that a more complete picture of the processes involved in the chemical processing of Titan’s atmosphere will emerge.

Materials and Methods

Experimental. The crossed beam experiments are carried out under single collision conditions using a crossed molecular beams machine described in ref. 29. Vargha et al. reported a pulsed supersonic D₁-ethyl radical beam, C₆D₁₁(²Σ⁺), in situ via laser ablation of graphite at 266 nm and seeding the ablated species in neat deuterium, which acts as a carrier as well as a reactant gas; the D₁-ethyl radical is formed in situ either via abstraction of a deuterium atom from molecular deuterium by a dicarbon molecule and/or by reaction of dicarbon with molecular deuterium forming intermediate(s) of the molecular formula C₂D₂ followed by deuterium atom loss of the latter. This beam contains also atomic carbon [C(¹P)], dicarbon [C₂(²Σ⁺), a¹Π(I)], and C₂(²Σ⁺). However, these species do not hamper with the reactive scattering signal of the reaction of D₁-ethyl with diacetylene at mass-to-charge ratios of m/z = 75 and 74. Here, the C(¹P) + C₂H₂(²Σ⁺) reaction leads to reactive scattering signal at m/z = 61 (C≡CH), whereas reactive collisions of C₂(²Σ⁺), a¹Π(I) with diacetylene result in the formation of C₂H₄ (73 atomic mass units) plus atomic hydrogen. The reactions of tricarbon with closed shell molecules like triacetylene have significant entrance barriers much higher than the collision energy used in the present experiments (30, 31); also, signal from this reaction is expected to arise at C≡H (85 atomic mass units), but was not observed experimentally. Consequently, none of the coreagents interferes with the reaction of D₁-ethyl radicals plus diacetylene. Note that molecular deuterium was preferred over molecular hydrogen, because molecular hydrogen would result in the formation of ethylene (m/z = 26). Because m/z = 26 also arises from ¹³C⁺C₂⁺ in the beam, the use of D₁-ethyl (m/z = 26) made it easier to optimize the production conditions of the D₁-ethyl radical without interferences from ¹³C⁺C₂⁺ in the beam. The generated D₁-ethyl beam passes a skimmer; a four-slot chopper wheel located after the ablation zone and before the interaction region selected a segment of the pulse with a peak velocity vₚ of 2,082 ± 50 m·s⁻¹ and speed ratio S of 2.3 ± 0.3. This beam crosses an argon-seeded diacetylene beam (at seeding fractions of 5%) in the main chamber at a collision energy of 40.1 kJ·mol⁻¹ (vₚ = 599 ± 20 m·s⁻¹, S = 21.0 ± 1.0). Diacetylene (> 99.5% purity) was synthesized according to literature (32), and purified by trap-to-trap distillation. The reactively scattered species were monitored using a triply differentially pumped detector consisting of a Brink-type electron-impact-ionizer, quadrapole mass filter, and a Daly ion detector by recording TOF spectra at different laboratory angles at mass to charge ratios. Last, we would like to emphasize that currently, the ethynyl production route via laser ablation combined with reactive formation presents the only viable way to cross an intense beam of D₁-ethyl radicals with seeded hydrocarbon reactants like diacetylene in any crossed beams machine. A possible addition of a heavy carrier gas such as argon, krypton, or xenon to deuterium would certainly reduce the collision energy, but also decreases the number density of the already weak D₁-ethyl radical beam, because the density of deuterium in the seeding gas will be reduced as well. An alternative production route via photodissociation of a helium-seeded bromoacetylene precursor would yield lower collision energies of ~22 kJ·mol⁻¹. However, the ethynyl beam generated in the photodissociation source has a lower number density than the D₁-ethyl beam used here. This pathway in turn would substantially increase the data accumulation time considering that the diacetylene precursor is seeded at a fraction of only 5%.

Computational. Our electronic structure calculations were conducted at a level of theory high enough to predict relative energies of all of local minima, transition states, and products of the D₁-ethyl reaction with diacetylene to a precision of ~5 kJ·mol⁻¹. Stationary points were optimized at the hybrid density functional B3LYP level (33, 34) with the 6-311G** basis set. Vibrational frequencies were calculated using the same B3LYP/6-311G** method and were used to compute zero-point vibrational energy (ZPE) corrections and reaction rate constants without scaling. In the calculations of vibrational frequencies, we used the deuterium isotope for the relevant hydrogen atom. Relative energies of various species were refined employing the coupled cluster CCSD(T) method (35–38) with extrapolation to the complete basis set (CBS) limit and including ZPEs obtained by B3LYP calculations for all C₆H₄D intermediates. The results of ab initio calculations, such as relative energies and molecular parameters, were used in Rice–Ramsperger–Kassel–Marcus (RRKM) calculations of energy-dependent rate constants for individual unimolecular steps. The detailed procedure for such calculations has been described in detail in our previous works (22, 39). We computed rate constants as functions of available internal energy of each intermediate or transition state, where the internal energy was taken as a sum of the chemical activation energy and the collision energy, assuming that a dominant fraction of the latter is converted to internal vibrational energy. Rate constants for decom-
internal excitation, and their lifetimes are less than a few picoseconds. However, in denser atmospheres of Titan, ternary collisions might impact the chemistry. These processes can divert the internal energy, and thus, will stabilize those intermediates if the lifetime of the intermediate is longer than the time to allow a ternary collision to take place. Based on the potential energy surface (Fig. 4), we investigated the unimolecular decomposition of intermediate [1] using RRKM calculations. This treatment suggests lifetimes of intermediate [1] of 3 to 24 ns; these times cover the temperature window of 94 to 200 K relevant to Titan’s atmosphere. Taking the atmospherically relevant pressure window of 1 to 1 × 10^{-6} mbar (17), and the collision cross section between intermediate [1] and a nitrogen bath molecule in Titan’s atmosphere from our computations (1.97 × 10^{-18} m^2), we estimate time scales between the collisions of 17–22 ns at 1 mbar and 17–22 ms at 1 × 10^{-6} mbar. A close look at these time scales indicates that the time between the collisions of intermediate [1] and a nitrogen bath molecule compared with the computed lifetime of intermediate [1] of typically a few ns is clearly too long to allow a third body collision to be relevant in Titan’s atmosphere in those regions where the ethynyl and diacetylene reactants are present. Consequently, the intermediates formed in the reaction of ethynyl radicals with diacetylene cannot be stabilized by third body collisions in the temperature range of 94–200 K and pressure window of 1 to 1 × 10^{-6} mbar; therefore, in Titan’s atmosphere, all intermediates [1] decompose solely to triacetylene plus atomic hydrogen.

Modeling. We perform a 1D diurnally-averaged simulation of the chemical processes in the atmosphere of Titan using a complex set of hydrocarbon chemistry involving up to 450 reactions (17). The detailed reactions can be found in the original reference. The reactions relevant to the polyene growth 2 and 3 were highlighted here. The concentrations of chemical species are calculated to steady state by solving the mass continuity equation:

\[
\frac{\partial n_i}{\partial t} + \frac{\partial q_i}{\partial z} = P_i - L_i,
\]

where \(n_i\) is the number density for species \(i\), \(q_i\) the vertical flux, \(P_i\) the chemical production rate, and \(L_i\) the chemical loss rate, all evaluated at time \(t\) and altitude \(z\). \(P_i\) and \(L_i\) are calculated based on the chemical schemes published in the literature (4, 25–27). The vertical flux is given by

\[
q_i = -\frac{\partial n_i}{\partial z} \left(D_i + K_{zz} - n_i \frac{D_i}{H_i} + \frac{K_{zz}}{H_{zz}} \right) - n_i \frac{\partial T}{\partial z} \left[1 + \frac{\alpha_i}{\tau} \left(D_i + K_{zz} \right) \right] + \omega_i,
\]

where \(D_i\) is the molecular diffusion of the species, \(H_i\) the scale height of the species, \(H_{zz}\), the atmospheric scale height, \(\alpha_i\) the thermal diffusion parameter, \(T\) the temperature, and \(\omega\) the advective velocity.

ACKNOWLEDGMENTS. We thank Dr. Eric Wilson (Jet Propulsion Laboratory, Pasadena, CA) for valuable discussions. This work was supported by National Science Foundation Chemistry Division Grant NSF-CRC CHE-0627854. M.C.L. was supported in part by National Science Council Grant 97-2628-M-001-001 (to Academia Sinica).