<table>
<thead>
<tr>
<th>Topics</th>
<th>Final Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Structure of DNA</td>
<td>Monday 2:45pm</td>
</tr>
<tr>
<td>Replication</td>
<td>Room 185 Bascom</td>
</tr>
<tr>
<td>RNA</td>
<td>Reviews</td>
</tr>
<tr>
<td>Transcription</td>
<td>Sat 10-12</td>
</tr>
<tr>
<td>ATP</td>
<td>Sun 2-4</td>
</tr>
<tr>
<td>That's All Folks</td>
<td>Room B371</td>
</tr>
</tbody>
</table>

Secondary structure of DNA

Hydrogen Bonds Between...

- T-A (2 H bonds)
- G-G (3 H bonds)

These multiple and bonding interactions are the driving force for the helical structure of DNA. This particular combination works, but others like T-G don't. See Figures in the book.

Replication see Figure 18.5

Write on this side only - do not double side for genchem office
DNA also takes its structural info and turns it into proteins via RNA, but what is RNA, you ask. Well, RNA is different from DNA, by...

The sugar back bone is just ribose

![Ribose structure](image)

No Thymine but Uracil. Instead, Cytosine is still there.

![Cytosine and Uracil](image)

This is bad, you get changes in DNA which cause mutations, death, and destruction.

ATP

![ATP structure](image)

See RNA transcription figures in book. See trans RNA messenger RNA figures in the book. Then there is ribosomal RNA which does many functions.

write on this side only - do not double side for genchem office
Metabolism of glucose

Glucose cleaves off these phosphate esters. This cleavage releases energy, exothermic.

Write on this side only - do not double side for genchem office