Topics

cis-trans isomers of alkenes

Addition reactions of alkenes

- HX addition
- H₂O addition
- X₂ addition

carbon-carbon and their relative stabilities

again, alkenes more reactive than alkanes

cis-trans isomers not just found in rings

\[
\text{cis} \quad \text{trans} \quad \text{dimeethylcyclohexane}
\]

both examples of trans

\[
\text{cis} \quad \text{trans} \quad \text{cyclohexane}
\]

trans, 1-butenone cis, 2-butenone

there are stereoisomers, same order of connection but different 3D arrangement
HX addition reactions (HF, HCl, HBr, HI)

\[\text{CH}_2=CH_2 + \text{Br}_2 \rightarrow \text{CH}_2=\text{CH}-\text{CH}_2=\text{CH}_3 \]

These are negative \(e^- \) pulled toward partial positive \(H \)

\[\text{Br}_2 \rightarrow \left[\text{CH}_2=\text{CH}-\text{CH} = \text{CH}_2 \right] \text{intermediate} \]

Write on this side only - do not double side for genchem office
Stability of carbenes: $R = \text{alkyl}$

- Methyl: primary
- Primary: 1^st
- Secondary: 2^nd
- Tertiary: 3^rd

Rate-limiting step is formation of carbenes.

Pathway a is favored because the carbocation has more alkyl groups connected to it because they can donate electron density and thus stabilize the positive charge.
Markovnikov’s Rule: On addition of HX to an alkenene, H adds to the side with more hydrogens.

Addition of H_2O

$$
\text{CH}_3 - \text{CH}_2 - CH = CH_2 \xrightarrow{H_2O} \text{CH}_3 - \text{CH}_2 - CH - CH_3
$$

Addition of X_2

$$
\text{CH}_3 - \text{CH}_2 - CH = CH_2 \xrightarrow{Br_2} \text{CH}_3 - CH_2 CH - CH_2
$$

Write on this side only - do not double side for genchem office

Page 4 of 4