Experimental Section

General. All reported reaction temperatures are those of the bath. Melting and boiling points are reported uncorrected. Kugelrohr distillation temperatures represent the pot temperature. Thin-layer chromatography (TLC) was performed on silica gel 60 F_{254} plates and visualized under ultraviolet light. Mass spectrometry data were obtained using a Micromass AutoSpec™ with electron impact ionization.

Routine NMR Spectroscopy. Routine 1H and 13C nuclear magnetic resonance (NMR) data were obtained on Bruker-250, Bruker-300, AVANCE or AM-360 instruments. All spectra were acquired in CDCl$_3$ or C$_6$D$_6$ using tetramethylsilane (TMS, δ 0.00) as an internal standard for 1H NMR and CDCl$_3$ (δ 77.0) or C$_6$D$_6$ (δ 128.0) for 13C NMR spectra. Routine 119Sn NMR spectra were acquired on a Bruker AM-360 spectrometer (unlocked) in protio-THF using Me$_4$Sn (δ 0.00) as an internal standard.

[15N]2-Bromophenylacetamide. A solution of 2.04 g of 2-bromophenylacetic acid (9.50 mmol), 740 µL of SOCl$_2$ (10.2 mmol, 1.07 equiv), and a catalytic amount of dimethylformamide (3 µL) in 40 mL of CH$_2$Cl$_2$ was heated to reflux for 24 h. The CH$_2$Cl$_2$ was removed by simple distillation with gentle heating to avoid decomposition of the 2-bromophenylacetyl chloride, which was used further without purification.

A solution of 99% isotopically-enriched 15NH$_4$Cl (0.556 g, 10.2 mmol, 1.07 equiv) in 7 mL of distilled water was covered with a thin layer of benzene (4 mL) and cooled to 0 °C. A solution of NaOH (0.843 g, 21.1 mmol, 2.22 equiv) in 5 mL of water was added directly to the aqueous layer via a Pasteur pipette inserted through the benzene layer followed immediately by the addition of the 2-bromophenylacetyl chloride in 40 mL of benzene. The biphasic solution was stirred vigorously at rt overnight and a white solid precipitated. The solution was cooled to 0 °C, the precipitate was filtered, washed with cold water (100 mL) and cold benzene (40 mL), and allowed to air dry overnight to yield 1.36 g (6.34 mmol, 67%) of a white crystalline solid; m.p. 183–185 °C. 1H NMR (300 MHz, CDCl$_3$): δ 3.75 (s, 2H), 5.36 (dd, $^{1}J_{H-15N} = 89.6$ Hz, $J = 3.0$ Hz, 1H), 5.42 (dd, $^{1}J_{H-15N} = 90.0$ Hz, $J = 2.5$ Hz, 1H), 7.14–7.20 (m, 1H), 7.29–7.40 (m, 2H), 7.58–7.64 (m, 1H). 13C(1H) NMR (75.4 MHz, CDCl$_3$): δ 3.54 (CH$_2$; d, $^{2}J_{13C-15N} = 8.97$ Hz), 124.89 (C), 128.03 (CH), 129.22 (CH), 131.60 (CH), 133.15 (CH), 134.74 (C), 171.70 (C; d, $^{1}J_{13C-15N} = 15.26$ Hz). IR (KBr): 3378, 3288, 3184, 1658, 1616 cm$^{-1}$. MS (EI): 1M$^+$ = 170.9648 (calc. for C$_8$H$_7$Br15NO – C(O)15NH$_2$ = 170.9634).
1[^15N]N,N-Dimethyl-2-(2-bromophenyl)ethylamine. [[^15N]2-Bromophenylacetamide (1.33 g, 6.17 mmol) was added to a dried and N₂-flushed 50 mL conical flask fitted with a septum. The flask was cooled to 0 °C under positive N₂ pressure. The amide was dissolved in a 1.0 M solution of BH₃ in THF (9.0 mL, 9.0 mmol, 1.5 equiv). Gas evolution was observed due to H₂ formation. The solution was transferred via a cannula to a dried and N₂-flushed 100 mL round-bottom flask equipped with a reflux condenser and fitted with a septum. Additional BH₃ was added (11.0 mL, 11.0 mmol, 1.8 equiv), and the solution was heated to reflux for 3 h. The solution was cooled to 0 °C and 20 mL of 6 M HCl (aq) (120 mmol, 19 equiv) was added dropwise over a period of 1 h. Caution: Addition of the 6M HCl too quickly will cause rapid H₂ gas evolution resulting in eruption of the solution and loss of material. The acidified solution was heated to reflux for 1 h (required to cleave the borane amine complex), cooled to 0 °C and basified to pH 9 with NaOH pellets. The aqueous solution was extracted with 1:1 Et₂O/hexanes (60 mL) and partitioned. The organic fraction was washed with water (2 x 200 mL) and brine (100 mL), dried over MgSO₄, filtered and concentrated in vacuo to give a clear, yellow oil. The [^15N]2-(2-bromophenyl)ethylamine- was used immediately and without purification before adsorption of atmospheric CO₂ would give the undesired carbonate.

A solution of 402 mg of NaBH₃CN (6.39 mmol, 1.04 equiv) and 439 mg of ZnCl₂ (3.22 mmol, 0.52 equiv) in 15 mL of MeOH was added to a solution of [^15N]2-(2-bromophenyl)ethylamine and 2.0 mL of 37% aqueous formaldehyde (24.6 mmol, 4.0 equiv) in 15 mL of MeOH. The solution was stirred at rt for 4 h. The reaction mixture was extracted with 1:1 Et₂O/hexanes (50 mL), the organic fraction was washed with 0.5 M NaOH (aq), water (200 mL), and brine (100 mL), dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, yellow oil. The crude product was purified by a Kugelrohr distillation (80–90 °C @ 0.02 mm Hg) to give 565 mg (2.47 mmol, 40%) of a clear, colorless oil. 1H NMR (300 MHz, CDCl₃): δ 2.33 (d, 2J_H-15N = 0.73 Hz, 6H), 2.48–2.56 (m, 2H), 2.89–2.96 (m, 2H), 7.01–7.11 (m, 1H), 7.19–7.27 (m, 2H), 7.50–7.55 (m, 1H). 13C{¹H} NMR (75.4 MHz, CDCl₃): δ 34.35 (CH₂; d, 2J_C-15N = 2.54 Hz), 45.33 (CH₃; d, 1J_C-15N = 4.45 Hz), 59.52 (CH₂; d, 1J_C-15N = 3.81 Hz), 124.49 (C), 127.45 (CH), 127.74 (CH), 130.63 (CH), 132.78 (CH), 139.65 (C, 3J_C-15N = 2.55 Hz). MS (EI): M⁺ = 230.0238 (calc. for C₁₀H₁₄Br¹⁵N = 230.0261).

[^15N]N,N-Dimethyl-(2-Trimethylstannylphenyl)ethylamine. [[^15N]N,N-Dimethyl-2-(2-bromophenyl)ethylamine (565 mg, 2.47 mmol) and 20 mL of THF were added to a dried and N₂-flushed 50 mL round-bottom flask fitted with a septum. The flask was cooled to -78 °C under positive N₂ pressure, and 0.80 mL of 3.43 M n-BuLi in hexanes (2.75 mmol, 1.11 equiv) was added slowly down the inside of the flask. After stirring at -78 °C for 5 min, the aryllithium reagent was quenched by the addition of 681 mg of Me₃SnBr (2.80 mmol, 1.13 equiv) in 10 mL of THF. The solution was diluted with 1:1 Et₂O/hexanes (50 mL), washed with water (2 x 200 mL) and brine (100 mL). The organic fraction was washed over MgSO₄, filtered, and concentrated in vacuo to give a clear, colorless oil. The crude product was purified by a Kugelrohr distillation (110–120 °C @ 0.03 mm Hg) to give 627 mg (2.00 mmol, 81%) of a clear, colorless oil. Density = 1.21 g/mL. 1H NMR (300 MHz, CDCl₃): δ 0.34 (s, 3J_H-¹¹⁹Sn = 54.2 Hz, 9H), 2.31 (d, 2J_H-¹⁵N = 0.74 Hz, 6H), 2.45–2.54 and 2.74–2.86 (AA'BB', 4H), 7.13–7.32 (m, 3H), 7.33–7.53 (m, 2J_H-¹¹⁹Sn = 56.1 Hz, 3J_H-¹⁵N = 2.55 Hz).
3-(2-Bromophenyl)propionic Acid. A 0.77 M solution of NaOEt, made from 5.32 g of Na\(^0\) (231 mmol, 5.43 equiv) in 300 mL of EtOH, was added to 34 mL of diethyl malonate (224 mmol, 5.25 equiv) in 50 mL of EtOH. 2-Bromobenzyl bromide (10.66 g, 42.65 mmol) in 50 mL of EtOH was added to the NaOEt solution and heated to reflux for 19 h. The EtOH was removed by distillation. The remaining solution was cooled to 0 °C, diluted with 150 mL of distilled water, and acidified to pH 2 with 12 M HCl (aq). The aqueous solution was extracted with 1:1 Et\(_2\)O/hexanes (3 x 60 mL). The organic fraction was washed with water (2 x 200 mL) and brine (150 mL), dried over MgSO\(_4\), filtered, and concentrated in vacuo to give a clear, colorless oil. The oil was taken up in 70 mL of EtOH and 200 mL of a 3.25 M NaOH (aq) was added; the solution was heated to reflux for 3 h. The EtOH was removed by distillation. The solution was cooled to 0 °C, acidified with 30 mL of 12 M HCl (aq), and then heated to reflux for 12 h. The solution was reacidified to pH 2 with 12M HCl (aq) and extracted with Et\(_2\)O (4 x 60 mL). The organic fraction was washed with brine (150 mL), dried over MgSO\(_4\), filtered, and concentrated in vacuo to give 9.17 g of a light brown solid. The crude product was purified in a sublimation apparatus (100 – 120 °C @ 0.02 – 0.05 mm Hg) by melting, vaporization, and then deposition on the cold finger to yield 5.017 g (21.90 mmol, 51%) of a white powder. m.p. 92 – 96 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 2.68 – 2.75\) and \(3.05 – 3.12\) (AA\(^{1}\)BB\(^{1}\), 4H), 5.63 (dd, \(J_{\text{H-H}} = 89.0\) Hz, \(J = 2.6\) Hz, 1H), 5.86 (dd, \(J_{\text{H-H}} = 88.3\) Hz, \(J = 2.6\) Hz, 1H), 7.08 (ddd, \(J = 7.73, 6.99, 2.21\) Hz, 1H), 7.24 (td, \(J = 7.72, 1.10\) Hz, 1H), 7.28 (dd, \(J = 7.72, 2.21\) Hz, 1H). 1\(^{3}\)C\(^{1}\)H NMR (75.4 MHz, CDCl\(_3\)): \(\delta = 8.15\) (CH\(_3\)), \(J_{\text{C-C}} = 347.8\) Hz), 37.43 (CH\(_2\)), \(J_{\text{C-C}} = 3.82\) Hz), \(J_{\text{C-C}} = 3.82\) Hz), 125.56 (CH), \(J_{\text{C-C}} = 46.4\) Hz), 128.55 (CH, \(J_{\text{C-C}} = 38.1\) Hz), 128.68 (CH, \(J_{\text{C-C}} = 10.2\) Hz), 136.17 (CH, \(J_{\text{C-C}} = 36.9\) Hz), 141.97 (C), 146.85 (C; d, \(J_{\text{C-C}} = 2.54\) Hz, \(J_{\text{C-C}} = 31.2\) Hz). \(^{19}\)Sn\(^{1}\)H NMR (THF, 134.3 MHz, \(\Delta \text{78 °C}): \(\delta = 33.4\). MS (EI): M\(^+\) = 299.0580 (calc. for C\(_{13}\)H\(_{23}\)\(^{15}\)NSn – CH\(_3\) = 299.0587).

\[^{15}\text{N}\]3-(2-Bromophenyl)propamide. A solution of 3.22 g of 3-(2-bromophenyl)propionic acid (14.04 mmol), 1.09 mL of SOCl\(_2\) (15.0 mmol, 1.06 equiv), and a catalytic amount of dimethylformamide (5 µL) in 40 mL of CH\(_2\)Cl\(_2\) was heated to reflux for 22 h. The CH\(_2\)Cl\(_2\) was removed by distillation with gentle heating to avoid decomposition of the 3-(2-bromophenyl)propionyl chloride, which was used without purification. A solution of 99% isotopically-enriched \(^{15}\)NH\(_4\)Cl (0.842 g, 15.5 mmol, 1.10 equiv) in 8 mL of water was covered with a thin layer of benzene (6 mL) and cooled to 0 °C. A solution of 1.271 g of NaOH (31.76 mmol, 2.26 equiv) in 7 mL of distilled water was added directly to the aqueous layer via a Pasteur pipette inserted through the benzene layer followed immediately by the addition of the 3-(2-bromophenyl)propionyl chloride in 30 mL of benzene. The biphasic solution was stirred vigorously at rt overnight and a white solid precipitated. The solution was cooled to 0 °C. The precipitate was filtered, washed with cold distilled water (2 x 30 mL) and cold benzene (20 mL), and allowed to air dry overnight to yield 2.572 g (11.23 mmol, 80%) of a white crystalline solid; m.p. 108 – 109 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 2.50 – 2.56\) and \(3.05 – 3.12\) (AA\(^{1}\)BB\(^{1}\), 4H), 5.63 (dd, \(J_{\text{H-H}} = 89.0\) Hz, \(J = 2.6\) Hz, 1H), 5.86 (dd, \(J_{\text{H-H}} = 88.3\) Hz, \(J = 2.6\) Hz, 1H), 7.08 (ddd, \(J = 7.73, 6.99, 2.21\) Hz, 1H), 7.24 (td, \(J = 7.72, 1.10\) Hz, 1H), 7.28 (dd, \(J = 7.72, 2.21\) Hz, 1H).
1) BH₃, THF
2) H₂CO, NaBH₃CN, ZnCl₂

15NH₂

\[\text{Br} \quad \text{SnMe}_3 \]

1) \(n \)BuLi
2) Me₃SnBr

\[\text{Hz, 1H), 7.53 (dd, } J = 8.08, 1.10 \text{ Hz, 1H). } \]
\[\text{13C}^{[1]} \text{H NMR (75.4 MHz, CDCl₃): } \delta 31.89 (\text{CH₂}), 35.64 (\text{CH₂}; d, J_{13C-15N} = 8.72 \text{ Hz}), 124.24 (\text{C}), 127.67 (\text{CH}), 128.11 (\text{CH}), 130.65 (\text{CH}), 132.86 (\text{CH}), 139.88 (\text{C}), 174.13 (\text{C}; d, J_{13C-15N} = 13.8 \text{ Hz}). \]
\[\text{IR (KBr): } 3328, 3162, 1663, 1628 \text{ cm}^{-1}. \]
\[\text{MS (EI): } M^+ = 149.0705 (\text{calc. for } \text{C}_9\text{H}_{10}\text{Br}^{15}\text{NO} - \text{Br} = 149.0733). \]

[15N]N,N-Dimethyl-3-(2-Bromophenyl)propylamine. To a dried and N₂-flushed 100 mL round-bottom flask equipped with a reflux condenser fitted with a septum, 2.357 g of 3-(2-bromophenyl)propionamide-15N (10.29 mmol) was added. The flask was cooled to 0 °C while maintaining positive N₂ pressure. The amide was dissolved in 27.0 mL of a 1.0 M solution of BH₃ in THF (27.0 mmol, 2.62 equiv). The reaction mixture was stirred at 0 °C for 15 minutes while gas evolution was observed due to H₂ formation. The solution was heated to reflux for 4 h. The solution was cooled to 0 °C and 20 mL of 6 M HCl (aq) (120 mmol, 11.7 equiv) was added dropwise over a period of 30 minutes. Caution: Addition of the 6M HCl (aq) too quickly will cause rapid H₂ gas evolution resulting in eruption of the solution and loss of material. The acidified solution was heated to reflux for 90 min, required to cleave the borane-amine complex. The solution was then cooled to 0 °C and basified to pH 9 with NaOH pellets. The aqueous solution was diluted with 1:1 Et₂O/hexanes (60 mL) and partitioned. The organic fraction was washed with water (2 x 200 mL) and brine (100 mL), dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, yellow oil. The [15N]3-(2-bromophenyl)propylamine was used immediately and without purification.

A solution of 1.42 g of NaBH₃CN (22.6 mmol, 1.10 equiv) and 1.55 g of ZnCl₂ (11.35 mmol, 1.10 equiv) in 20 mL of MeOH was added to a solution of [15N]3-(2-bromophenyl)propylamine and 3.6 mL of 37% aqueous formaldehyde (44.3 mmol, 4.3 equiv) in 20 mL of MeOH and allowed to stir at room temperature overnight. Note: Caution is required due to the formation of HCN(g). This step must be performed in a well-ventilated hood. The solution was heated to reflux for 1 h, required to cleave the borane–amine bond. The solution was then cooled to 0 °C and basified to pH 9 with NaOH pellets. The aqueous solution was diluted with 1:1 Et₂O/hexanes (60 mL) and partitioned. The organic fraction was washed with distilled water (2 x 200 mL) and brine (100 mL), dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, pale yellow oil. The crude product was purified by a Kugelrohr distillation (105–120 °C @ 0.02 mm Hg) to give 1.548 g (6.37 mmol, 62%) of a clear, colorless oil. 1H NMR (300 MHz, CDCl₃): \(\delta 1.72–1.86 \) (m, 2H), 2.24 (d, \(J_{H-15N} = 0.74 \text{ Hz, 6H} \)), 2.30–2.37 (m, 2H), 2.71–2.79 (m, 2H), 7.00–7.09 (m, 1H), 7.18–7.25 (m, 2H), 7.50–7.54 (m, 1H). 13C{1H} NMR (75.4 MHz, CDCl₃): \(\delta 27.90 \) (CH₃; d, \(J_{13C-15N} = 1.91 \text{ Hz} \)), 34.00 (CH₂; d, \(J_{13C-15N} = 2.54 \text{ Hz} \)), 45.43 (CH₃; d, \(J_{13C-15N} = 3.82 \text{ Hz} \)), 59.18 (CH₂; d, \(J_{13C-15N} = 3.82 \text{ Hz} \)), 124.41 (C), 127.35 (CH), 127.47 (CH), 130.32 (CH), 132.75 (CH), 141.56 (C). MS (EI): \(M^+ = 244.0395 \) (calc. for \(\text{C}_{11}\text{H}_{16}\text{Br}^{15}\text{N} = 244.0417 \)).

[15N]N,N-Dimethyl-3-(2-Trimethylstannylphenyl)propylamine. [15N]N,N-Dimethyl-3-(2-bromophenyl)propylamine (1.46 g, 6.00 mmol) and 10 mL of THF were added to a dried and N₂-flushed 100 mL round-bottom flask fitted with a septum. The flask was cooled to –78 °C N₂, and 2.00 mL of 3.24 M \(n \)-BuLi in hexanes (6.48 mmol, 1.08 equiv) was added down the inside of the flask. After stirring at –78 °C for 5 min, 1.66 g of Me₃SnBr (6.82 mmol, 1.14 equiv) in 10 mL of THF was added. The solution was
diluted with 1:1 Et₂O/hexanes (40 mL), washed with water (2 x 200 mL) and brine (100 mL). The organic fraction was dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, colorless oil. The crude product was purified by a Kugelrohr distillation (145−160 °C @ 0.03 mm Hg) to give 1.612 g (4.93 mmol, 82% yield) of a clear, colorless oil. Density = 1.18 g/mL. 1H NMR (300 MHz, CDCl₃): δ 0.31 (s, 2J¹¹⁹Sn-H = 54.1 Hz, 9H), 1.70−1.83 (m, 2H), 2.23 (d, 2J¹¹⁹Sn = 0.73 Hz, 6H), 2.30−2.37 (m, 2H), 2.58−2.67 (m, 2H), 7.12−7.32 (m, 3H), 7.32−7.53 (m, 1H). 13C{¹H} NMR (75.4 MHz, CDCl₃): δ 8.19 (CH₃), 30.54 (CH₂; d, 2J¹³C-¹⁵N = 1.90 Hz), 36.84 (CH₂; d, 2J¹³C-¹⁵N = 1.90 Hz), 45.47 (CH₃; d, 2J¹³C-¹⁵N = 4.45 Hz), 59.57 (CH₂; d, 2J¹³C-¹⁵N = 3.81 Hz), 125.37 (CH), 128.10 (CH), 128.68 (CH), 131.67 (CH), 141.57 (C), 148.93 (C). ¹¹⁹Sn{¹H} NMR (THF, 134.3 MHz, δ 78 °C): *34.4. MS (EI): M⁺ = 313.0716 (calc. for C₁₄H₂₅¹⁵NSn = 313.0743).

2-Bromobenzyl Methyl Ether. A 2.0 M solution of NaOMe, from 1.15 g of Na⁰ (50.0 mmol, 1.20 equiv) in 25 mL of MeOH, was added to 10.44 g of 2-bromobenzyl bromide (41.8 mmol) and heated to reflux for 3 h. The solution was cooled to 0 °C and taken up in 1:1 Et₂O/hexanes (80 mL). The organic fraction was washed with distilled water (2 x 200 mL) and brine (80 mL), dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, colorless oil. The crude product was purified by a Kugelrohr distillation (50−70 °C @ 0.25 mm Hg) to yield 7.10 g (35.3 mmol, 85%) of the Et₂O. 1H NMR (CDCl₃, 300 MHz): δ 3.47 (m, 3H), 4.53 (m, 2H), 7.15 (td, J = 7.8, 2.0 Hz, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.46 (dd, J = 7.5, 2.0 Hz, 1H), 7.54 (dd, J = 7.8, 1.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 75.4 MHz): δ 8.06 (CH₃), 57.80 (CH₃), 76.29 (CH₂), 127.12 (CH), 127.66 (CH), 128.19 (CH), 136.56 (CH), 141.49 (C), 144.50 (C). MS (EI): M⁺ = 201.9827 (calc. for C₈H₉BrO = 201.9818).

2-Trimethylstannylbenzyl Methyl Ether. 2-Bromobenzyl methyl ether (2.050 g, 10.20 mmol) and 20 mL of THF were added to a dried and N₂-flushed 100 mL round-bottom flask fitted with a septum. The flask was cooled to −78 °C under positive N₂ pressure and 3.70 mL of 2.87 M n-BuLi in hexanes (10.62 mmol, 1.04 equiv) was added. After stirring at −78 °C for 18 min, the lithium reagent was quenched by the addition of 2.594 g of Me₃SnBr (10.64 mmol, 1.04 equiv) in 7 mL of THF. The solution was taken up in 1:1 Et₂O/hexanes (60 mL), washed with water (2 x 200 mL) and brine (100 mL). The organic fraction was dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, colorless oil. The crude product was purified by a Kugelrohr distillation (103−112 °C @ 0.03 mm Hg) to yield 2.443 g (8.57 mmol, 84%) of a clear, colorless oil. Density = 1.31 g/mL. ¹H NMR (300 MHz, CDCl₃): δ 3.27 (s, 2J¹¹⁹Sn-H = 54.6 Hz, 9H), 3.35 (s, 3H), 4.45 (s, 4J¹¹⁹Sn = 4.4 Hz, 2H), 7.19−7.35 (m, 3H), 7.43−7.65 (m, 1H). ¹³C{¹H} NMR (CDCl₃, 75.4 MHz): δ 8.06 (CH₃), 57.80 (CH₃), 76.29 (CH₂), 127.12 (CH), 127.66 (CH), 128.19 (CH), 136.56 (CH), 141.49 (C), 144.50 (C). ¹¹⁹Sn{¹H} NMR (THF, 134.3 MHz, −78 °C): δ −38.2. MS (EI): M⁺ = 271.0155 (calc. for C₁₁H₁₈OSnCH₃ = 271.0145).

[¹³C]2-Trimethylsilylbenzyl Methyl Ether. A solution of [¹³C]2-trimethylstannylbenzyl methyl ether
(276 mg, 0.96 mmol) and THF (3 mL) was cooled to -78 °C under a N2 atmosphere and 382 uL of 2.62 M n-BuLi in hexane (1.0 mmol) was added slowly. After 15 min, TMSCl (200 uL, 1.57 mmol) was added. The solution was stirred for 15 min and warmed to rt for an additional 1 h. The solution was diluted with 1:1 Et2O/hexane and washed with water and brine, and then dried over MgSO4. The solution was concentrated in vacuo to give an oil. Kugelrohr distillation (50 - 54 °C @ 0.03 mm Hg) afforded 110 mg (59%) of a clear, colorless oil. 1H NMR (300 MHz, CDCl3): δ 0.33 (s, 9H), 3.39 (d, JHC = 141 Hz, 3H), 4.52 (d, JHC = 3.7 Hz, 2H), 7.23 - 7.42 (m, 3H), 7.54 - 7.56 (m, 1H). 13C{1H} NMR (90.6 MHz, CDCl3): δ 0.22 (CH3), 57.9 (CH3), 74.9 (d, JCC = 1.9 Hz, CH2), 126.9 (CH), 128.3 (CH), 129.1 (CH), 134.6 (CH), 138.4 (C), 143.5 (d, JCC = 3.4 Hz, C). MS (EI): M+ = 180.0929 (calc. for C11H18OSi - CH3 = 180.0926).

[13C]2-Methylbenzyl Methyl Ether. A solution of [13C]2-trimethylstannylbenzyl methyl ether (281 mg, 0.98 mmol) and THF (5 mL) was cooled to -78 °C under a N2 atmosphere and 393 uL of 2.62 M n-BuLi in hexane (1.03 mmol) was added slowly. After 15 minutes, MeI (181 uL, 1.28 mmol) was added. The solution was stirred for 15 min and warmed to rt for an additional 1h. The solution was diluted with 1:1 Et2O/hexane, washed with water and brine, dried over MgSO4 and concentrated in vacuo to give an oil. Purification by column chromatography (5% EtOAc/hexane) yielded 32 mg (0.23 mmol, 23%) of a clear, colorless oil. 1H NMR (250 MHz, CDCl3): δ 2.33 (s, 3H), 3.40 (d, JHC = 139 Hz, 3H), 4.45 (d, JHC = 3.8 Hz, 2H), 7.13-7.34 (m, 4H). 13C{1H} NMR (90.6 MHz, CDCl3): δ 18.7 (CH3), 58.1 (CH3), 73.0 (d, JCC = 1.8 Hz, CH2), 125.7 (CH), 127.8 (CH), 128.5 (CH), 130.2 (CH), 136.0 (d, JCC = 3.2 Hz, C), 136.6 (C). MS (EI): M+ = 137.0918 (calc. for C9H12O = 137.0922).

2-(2-Bromophenyl)ethanol. 2-Bromophenylacetic acid (1.002 g, 4.66 mmol) was added to a dried and N2-flushed 25 mL round-bottom flask and cooled to 0 °C under positive N2 pressure. A 1.0 M solution of BH3 in THF (10.0 mL, 10.0 mmol, 2.15 equiv) was added. Upon addition, gas evolution was observed due to H2 formation. The solution was stirred at 0 °C for 3 h, then quenched slowly with drops of distilled water until no more gas evolved. The reaction mixture was taken up in 1:1 Et2O/hexanes (40 mL), washed with saturated Na2CO3 (100 mL), water (100 mL), and brine (100 mL), dried over MgSO4, filtered, and concentrated in vacuo to give a cloudy, colorless oil. The crude product was purified by a Kugelrohr distillation (125–135 °C @ 0.02 mm Hg) to give 758 mg (3.77 mmol, 81%) of a clear, colorless oil. 1H NMR (300 MHz, CDCl3): δ 1.63 (broad s, 1H), 3.03 (t, J = 6.62 Hz, 2H), 3.88 (t, J = 6.62 Hz, 2H), 7.04 - 7.15 (m, 1H), 7.19 - 7.30 (m, 2H), 7.52 - 7.58 (m, 1H). 13C{1H} NMR (75.4 MHz, CDCl3): δ 39.30 (CH2), 62.02 (CH2), 124.66 (C), 127.44 (CH), 128.18 (CH), 131.25 (CH), 132.94 (CH), 137.78 (C). IR (CCl4): 3631, 3941, 1040 cm⁻¹. MS (EI): M+ = 201.9825 (calc. for C8H9BrO = 201.9818).

2-(2-Bromophenyl)ethyl Methyl Ether. Powdered KOH (0.888 g, 15.82 mmol, 4.20 equiv) was added to 5 mL of DMSO in a 25 mL round-bottom flask and stirred at rt for 15 min. A solution of 0.50 mL of MeI (8.03 mmol, 2.13 equiv) and 0.758 g of 2-(2-bromophenyl)ethanol (3.77 mmol) in 4 mL of DMSO was added to the KOH solution. This reaction is very exothermic! Before the addition, the 25 mL flask was
placed in a room temperature bath to absorb excess heat. The reaction mixture was poured into 80 mL of water and extracted with CH₂Cl₂ (3 x 20 mL). The organic extract was washed with water (2 x 50 mL) and brine (50 mL), dried over MgSO₄, filtered, and concentrated in vacuo to give a cloudy, colorless oil. The crude product was purified by Kugelrohr distillation (75–85 °C @ 0.04 mm Hg) to yield 0.713 g (3.31 mmol, 88%) of a clear, colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 3.03 (t, J = 6.99 Hz, 2H), 3.37 (s, 3H), 3.61 (t, J = 6.99 Hz, 2H), 7.04–7.11 (m, 1H), 7.20–7.30 (m, 2H), 7.51–7.56 (m, 1H). ¹³C{¹H} NMR (75.4 MHz, CDCl₃): δ 39.29 (CH₂), 58.64 (CH₃), 71.72 (CH₂), 124.59 (C), 127.37 (CH), 127.97 (CH), 131.02 (CH), 132.76 (CH), 138.15 (C). MS (EI): M⁺ = 215.9968 (calc. for C₉H₁₁BrO = 215.9974).

(2-Trimethylstannylphenyl)ethyl Methyl Ether. 2-(2-Bromophenyl)ethyl methyl ether (0.689 g, 3.20 mmol) and 10 mL of THF were added to a dried and N₂-flushed 50 mL round-bottom flask fitted with a septum. The flask was cooled to –78 °C under positive N₂ pressure and 1.80 mL of 1.91 M n-BuLi in hexanes (3.44 mmol, 1.07 equiv) was added. The solution turned yellow then became white and heterogeneous within 10 min. After stirring at –78 °C for 10 min, the aryllithium reagent was quenched by the addition of 0.875 g of Me₃SnBr (3.59 mmol, 1.12 equiv) in 5 mL of THF. The solution became homogenous and turned a pale yellow color. The solution was taken up in 1:1 Et₂O/hexanes (40 mL), washed with distilled water (2 x 200 mL) and brine (150 mL). The organic fraction was dried over MgSO₄, filtered, and concentrated in vacuo to give a clear, pale yellow oil. The crude product was purified by a Kugelrohr distillation (107–118 °C @ 0.035 mm Hg) to yield 0.8623 g (2.88 mmol, 90%) of a clear, colorless oil. Density = 1.27 g/mL. ¹H NMR (300 MHz, CDCl₃): δ 0.32 (s, 9H), 2.88–2.96 and 3.51–3.58 (AA'BB', 4H), 3.36 (s, 3H), 7.15–7.32 (m, 3H), 7.33–7.54 (m, 1H). ¹³C{¹H} NMR (75.4 MHz, CDCl₃): δ –119Sn = 54.4 Hz, 9H), 2.88–2.96 and 3.51–3.58 (AA'BB', 4H), 3.36 (s, 3H), 7.15–7.32 (m, 3H), 7.33–7.54 (m, 1H). ¹¹⁹Sn{¹H} NMR (THF, 134.3 MHz, –78 °C): δ –34.1.

3-(2-Bromophenyl)propanol. To a dried and N₂-flushed 25 mL round-bottom flask, 2.405 g of 3-(2-bromophenyl)propionic acid (10.50 mmol) was added. The flask was cooled to 0 °C under positive N₂ pressure. A 1.0 M solution of BH₃ in THF (11.0 mL, 11.0 mmol, 1.05 equiv) was added. Upon addition, gas evolution was observed due to H₂ formation. The solution was stirred at 0 °C for 3 h, then quenched slowly with drops of water until no more gas evolved. The reaction mixture was taken up in 1:1 Et₂O/hexanes (40 mL), washed with distilled water (2 x 200 mL) and brine (150 mL). The organic fraction was dried over MgSO₄, filtered, and concentrated in vacuo to give a cloudy, colorless oil. The crude product was purified by a Kugelrohr distillation (135–145 °C @ 0.05 mm Hg) to yield 1.6943 g (7.88 mmol, 75%) of a clear, colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 1.82–1.94 and 2.78–2.85 (AA'BB', 4H), β 2.16 (s, 1H), 3.68 (t, J = 6.62 Hz, 2H), 3.68 (t, J = 6.62 Hz, 2H), 6.99–7.09 (m, 1H), 7.18–7.26 (m, 2H), 7.49–7.54 (m, 1H). ¹³C{¹H} NMR (75.4 MHz, CDCl₃): δ 32.31 (CH₂), 32.61 (CH₂), 61.95 (CH₃), 124.36 (C), 127.39 (CH), 127.56 (CH), 130.33 (CH), 132.72 (CH), 141.03 (C). IR (CCl₄): 3638, 3502, 1051, 1020 cm⁻¹. MS (EI): M⁺ = 215.9989 (calc. for C₁₁H₁₁BrO = 215.9974).
3-(2-Bromophenyl)propyl Methyl Ether. Powdered KOH (2.50 g, 44.6 mmol, 5.66 equiv) was added to 9 mL of DMSO in a 25 mL round-bottom flask and stirred at rt for 20 min. A solution of 1.00 mL of MeI (16.1 mmol, 2.04 equiv) and 1.694 g of 3-(2-bromophenyl)propanol (7.88 mmol) in 4 mL of DMSO was added to the KOH solution. This reaction is very exothermic! Before the addition, the 25 mL flask was placed in a rt bath to absorb excess heat. The reaction mixture was poured into 80 mL of water and extracted with CH2Cl2 (4 x 20 mL). The organic extract was washed with water (2 x 50 mL) and brine (50 mL), dried over MgSO4, filtered, and concentrated in vacuo to give a cloudy, colorless oil. The crude product was purified by Kugelrohr distillation (75-85 °C @ 0.04 mm Hg) to yield 1.65 g (7.19 mmol, 91%) of a clear, colorless oil. 1H NMR (300 MHz, CDCl3): δ 1.84–1.95 (m, 2H), 2.78–2.85 (m, 2H), 3.36 (s, 3H), 3.42 (t, J = 6.62 Hz, 2H), 7.00–7.10 (m, 1H), 7.19–7.25 (m, 2H), 7.53 (d, J = 7.35 Hz, 1H). 13C{1H} NMR (75.4 MHz, CDCl3): δ 29.57 (CH2), 32.69 (CH2), 58.53 (CH3), 71.79 (CH2), 124.44 (C), 127.35 (CH), 127.54 (CH), 130.45 (CH), 132.77 (CH), 141.20 (C). MS (EI): M+ = 230.0138 (calc. for C10H13BrO = 230.0131).

3-(o-Trimethylstannylphenyl)propyl Methyl Ether. To a dried and N2-flushed 100 mL round-bottom flask fitted with a septum, 1.306 g of 3-(2-bromophenyl)propyl methyl ether (5.70 mmol) and 10 mL of THF were added. The flask was cooled to -78 °C under positive N2 pressure, then 2.00 mL of 3.24 M n-BuLi in hexanes (6.48 mmol, 1.14 equiv) was added slowly down the inside of the flask. After stirring at -78 °C for 5 min, the aryllithium reagent was quenched by the addition of 1.64 g of Me3SnBr (6.74 mmol, 1.18 equiv) in 7 mL of THF. The reaction mixture was taken up in 1:1 Et2O/hexanes (40 mL), washed with distilled water (2 x 200 mL) and brine (100 mL). The organic fraction was dried over MgSO4, filtered, and concentrated in vacuo to give a clear, colorless oil. The crude product was purified by a Kugelrohr distillation (120–130 °C @ 0.03 mm Hg) to yield 1.4251 g (4.55 mmol, 80%) of a clear, colorless oil. Density = 1.21 g/mL. 1H NMR (300 MHz, CDCl3): δ 0.32 (s, 2J_H-119Sn = 54.4 Hz, 9H), 1.81–1.95 (m, 2H), 2.65–2.74 (m, 2H), 3.36 (s, 3H), 3.43 (t, J = 6.62 Hz, 2H), 7.12–7.32 (m, 3H), 7.32–7.53 (m, 1H). 119Sn{1H} NMR (THF, 134.3 MHz, -78 °C): δ -33.5. MS (EI): M+ = 299.0449 (calc. for C13H22OSnCH3 = 299.0458).

2-Ethyltrimethylstannylbenzene. 2-Bromoethylbenzene (692 uL, 5.0 mmol) and THF (5 mL) were added to a dry round-bottom flask under a N2 atmosphere. The solution was cooled to -78 °C and 5.6 mL of 1.8 M t-BuLi (10.0 mmol) was slowly added. After 10 min, a solution of Me3SnBr (1.47 g, 5.5 mmol) in 5 mL of THF added slowly, the solution was stirred for 10 min, the cold bath was removed and the solution was allowed to warm for 5 min before saturated NH4Cl (aq.) was added. The solution was diluted with Et3O (50 mL) and hexane (25 mL) and washed with water (200 mL) and brine (100 mL). The organic fraction was dried over MgSO4, filtered, and concentrated in vacuo to give an oil. Kugelrohr distillation (33-46 °C @ 0.014 mm Hg) afforded 821 mg (61%) of a clear, colorless oil. 1H NMR (CDCl3, 360 MHz): δ 0.31 (s, 2J_H, 119Sn = 54.3 Hz, 9H), 1.23 (t, J = 7.6 Hz, 3H), 2.66 (q, J = 7.6 Hz, 2J_H,119Sn = 6.2 Hz, 2H), 7.11-7.5 (m, 4H).
13C\{1H\} NMR (CDCl$_3$, 90.56 MHz): δ -8.3 (CH$_3$, $^1J_{13C-119Sn} = 347.8$ Hz), 16.5 (CH$_3$), 32.0 (CH$_2$, $^3J_{13C-Sn} = 28.2$ Hz), 125.3 (CH, $^3J_{13C-Sn} = 48.1$ Hz), 127.4 (CH, $^3J_{13C-Sn} = 38.5$ Hz), 128.8 (CH, $^3J_{13C-Sn} = 10.3$ Hz), 136.1 (CH, $^3J_{13C-Sn} = 38.1$ Hz), 141.3 (C), 150.8 (C). MS (EI): M$^+$ = 255.0188 (calc. for C$_{11}$H$_{18}$Sn-CH$_3$ = 255.0196).
NMR Experiments Conducted on 2-(2-Dimethylaminoethyl)phenyllithium (2)

Figure S-1. ^6Li and ^{13}C NMR spectra of 0.12 M 2-(2-dimethylaminoethyl)phenyllithium (2) in 3:2:1 THF/Me$_2$O/Et$_2$O at -130 to -145 °C.

Variable-Temperature ^6Li NMR Experiment of [$^6\text{Li},^{15}\text{N}$]$_2$. [$^{15}\text{N}$]N,N-Dimethyl-2-(2-trimethylstannylphenyl)ethylamine (0.163 g, 0.520 mmol) was added to a dried and N$_2$-flushed 10 mm NMR tube. The NMR tube was cooled to -78 °C and 1.0 mL of Me$_2$O and 0.32 mL of 1.54 M n-Bu6Li in pentane (0.49 mmol, 0.95 equiv) were added. The sample was stored at -78 °C for 22 h while the aryllithium reagent crystallized. The supernatant was removed by cannula transfer, and the crystals were washed with Et$_2$O (2 x 0.5 mL). The aryllithium crystals were dissolved in 1.8 mL of THF and 1.2 mL of Et$_2$O to give a clear, colorless 0.10 M solution of [$^6\text{Li},^{15}\text{N}$]$_2$. The variable temperature experiment was monitored by ^6Li NMR spectroscopy with spectra acquired at the following probe temperatures: -137, -132, -128, -124, -119, -115, -110, -107, -103, and -87 °C. Spectra are shown in Fig. 4 and Fig S-3b. The ^6Li NMR spectra were simulated using the exchange matrix shown in Fig. S-2.[1k] This simulation has the usual problem of ^6Li simulations in that there is no realistic way to estimate line width in the absence of exchange, since there are no other peaks in the spectra. Rate data is shown in Fig. 5. A similar experiment on a sample with ^{15}N at natural abundance is shown in Fig. S-3a.

After the variable temperature experiment was completed, a TMEDA titration was performed on the sample (spectra are shown in Fig. 6).
Figure S-2. (a) Exchange processes in 2. (b) Exchange matrix used to simulate the variable temperature NMR experiment on \([^6\text{Li}, ^{15}\text{N}]2\).
Figure S-3. 6Li NMR spectra of a variable temperature experiment of 0.10 M 2 in 3:2 THF/Et$_2$O. (a) $[^6$Li]2. (b) $[^6$Li, 15N]2. The upper trace of each pair is a simulated spectrum using the rate constants shown and the exchange matrix of Fig. S-2.

Estimation of Fractions of Chelated and Unchelated Forms of 2 (Scheme 3). Scheme 3 presents a scenario for the effect of chelation on the monomer-dimer equilibrium. The estimates for the fractions of the two species in brackets that are not observable were made as follows.

Dimer: The presence of mono-chelated dimers in fast intramolecular exchange would only result in a diminution of the Li-N coupling. The coupling is not reduced by much, since, at 2.70 Hz, it is similar to those found for 1 and its analogs (2.5-2.8 Hz). The bis-unchelated form, if present, must be in slow exchange, otherwise only one Li signal would have been observed. There are no signals in the 6Li NMR spectra greater than about 4% of the intensity of the A-dimer, so this provides our best estimate of the maximum fraction of unchelated dimers in slow exchange, $K_{chel} ([\text{chelated dimer}] / [\text{unchelated dimer}]) \geq 25$.

Monomer: There are two limiting possibilities. If the chelated and unchelated forms of the monomer are in rapid equilibrium on the NMR time scale, the maximum size of the coupling ($J < 0.3$ Hz, determined by line-shape simulation) means that less than 11% of the monomer can be chelated, assuming that the coupling was at least as large as in the dimer (2.7 Hz). Since chelation/dechelation in the dimer is in slow
exchange on the NMR time scale, a more likely scenario is that the chelated and unchelated forms of the monomer are also slow exchange. In this case the absence of other signals attributable to the chelated monomer (a doublet) would be the deciding factor. If such a signal is not obscured by other signals, we estimate that <15% of the monomer is chelated by this criterion. Thus for the monomer K_{eq}
(chelated/unchelated) = 0.18 and the dimer has >140 times propensity to chelate as does the monomer.

Variable Temperature experiment on [6Li, 15N]$_2$ with 2 equiv of TMEDA. A 0.13 M sample of [6Li, 15N]$_2$ in 1.5 mL of THF, 0.5 mL of Et$_2$O, and 1.0 mL of Me$_2$O was prepared from [15N]$_2$N,N-dimethyl-2-(2-trimethylstannylphenyl)ethylamine (0.137 g, 0.436 mmol) and 0.59 mL of 0.79 M n-Bu6Li in hexanes (0.47 mmol, 1.06 equiv) using the general procedure for crystallization from Me$_2$O (clear, colorless solution). TMEDA (126 µL, 2 equiv) was added, and a series of 6Li NMR spectra were acquired at -153, -150, -147, -140, and -134 °C to decoalesce the signal for the TMEDA-complexed monomer and the monomer. Spectra are shown in Fig. 6.

PMDTA Titration of [6Li, 15N]$_2$. A 0.13 M solution of [6Li, 15N]$_2$ prepared as for the TMEDA experiment above was used for a PMDTA titration experiment monitored by 13C and 6Li NMR spectroscopy. The 13C NMR spectra were acquired at 0 and 1 equiv of PMDTA. The 6Li NMR spectra were acquired at 0, 0.17, 0.33, 0.5, 0.67, 0.83, and 1 equiv of PMDTA. The probe temperature was −145 °C during the experiment. Spectra are shown in Fig. 7.

HMPA Titration of [6Li, 15N]$_2$. A sample like the one above (0.15 M) was used for an HMPA titration monitored by 6Li and 31P NMR spectroscopy. The NMR spectra were acquired at 0, 0.17, 0.33, 0.5, 0.673, 1, 2, 3, and 4 equiv of HMPA (1 equiv = 76 µL). The probe temperature ranged from −140 to −150 °C during the experiment. Selected spectra are shown in Fig. S-4. Samples of 2 containing HMPA were not stable to storage at -78 °C. After a few hours decomposition occurred to form lithium dimethylamide and, presumably, styrene (which was not detected).

Interpretation of HMPA titration of 2. Both the A-dimer 2A and the monomer 2M complex on HMPA at fractional equivalents, but by one equiv only the mono-HMPA complex of the monomer can be seen. This structure is not chelated, since only the doublet splitting ($J_{Li,P} = 3.1$ Hz) from coupling to 31P is seen. Past one equiv of HMPA the ArLi·(HMPA)$_2$ complex appears to be formed (Li-P coupling not resolved), as well as some of the triple ion Ar$_2$Li$^-$ Li$^+$·(HMPA)$_4$ (top spectrum in Fig. S-4). No clear Li-N or Li-P coupling was detected for the central Li, but the signal was quite broad, and resolution enhancement sometimes gave triplet-like peak shapes, so it is probable that the triple ion is chelated, as demonstrated for 6-methoxy-2-dimethylaminomethylphenyllithium.$^{[1h]}$
Figure S-4. 6Li NMR spectra of an HMPA titration of 2. Left panel: 0.13 M $[^6$Li]2 in 3:2 THF/Et$_2$O at -133 to -139 °C. Top spectrum and right panel: 0.15 M $[^6$Li, 15N]2 in 3:2:1 THF/Me$_2$O/Et$_2$O at -140 to -150 °C (h = HMPA).
NMR Experiments Conducted on 2-(3-Dimethylaminopropyl)phenyllithium (3)

TMEDA Titration of [⁶Li, ¹⁵N]₃. [¹⁵N]N,N-Dimethyl-3-(2-trimethylstannylphenyl)propylamine- (0.166 g, 0.509 mmol), 1.5 mL of THF and 0.5 mL of Et₂O were added to a dried and N₂-flushed 10 mm NMR tube. The NMR tube was cooled to −78 °C and 0.64 mL of 0.79 M n-Bu⁶Li in hexanes (0.51 mmol, 1.00 equiv) was added to give a yellow solution. Addition of 1.0 mL of Me₂O gave an initial aryllithium concentration of 0.14 M. The sample was stored overnight at −78 °C to insure complete the lithium-tin exchange before beginning the NMR experiment. The TMEDA titration experiment was monitored by ⁶Li NMR spectroscopy. The NMR spectra were acquired at 0, 1, 2, 4 and 6 equiv of TMEDA (1 equiv = 76 µL) at probe temperatures between −140 to −145 °C. After the experiment was completed, the sample was quenched with 100 µL of Me₃SiCl (0.788 mmol, 1.55 equiv) to give a 93 % yield of [¹⁵N]N,N-dimethyl-3-(2-trimethylsilylphenyl)propylamine- by ¹H NMR integration against pentachloroethane (30.0 µL, 0.249 mmol, 0.490 equiv) as a standard.

PMDTA Titration of [⁶Li, ¹⁵N]₃. [¹⁵N]N,N-Dimethyl-3-(2-trimethylstannylphenyl)propylamine (0.163 g, 0.498 mmol), 1.8 mL of THF and 1.2 mL of Et₂O were added to a dried and N₂-flushed 10 mm NMR tube. The NMR tube was cooled to −78 °C and 0.63 mL of 0.79 M n-Bu⁶Li in hexanes (0.50 mmol, 1.00 equiv) was added to give a yellow solution with an initial aryllithium concentration of 0.14 M. The sample was stored for 30 min at −20 °C to complete the lithium-tin exchange. The PMDTA titration experiment was monitored by ⁶Li NMR spectroscopy. The NMR spectra were acquired at 0, 0.25, 0.5, 0.75 and 1 equiv of PMDTA (1 equiv = 104 µL). The probe temperature was −127 °C during the experiment. The spectra are shown in Fig. 8. After the experiment was completed, the sample was quenched with 100 µL of Me₅SiCl (0.788 mmol, 1.58 equiv) to give a 93 % yield of [¹⁵N]N,N-dimethyl-3-(2-trimethylsilylphenyl)propylamine by ¹H NMR integration against pentachloroethane (30.0 µL, 0.249 mmol, 0.500 equiv) as a standard.

HMPA Titration of [⁶Li, ¹⁵N]₃. A sample of [⁶Li, ¹⁵N]₃ in 1.8 mL of THF and 1.2 mL of Et₂O was prepared from [¹⁵N]N,N-dimethyl-3-(2-trimethylstannylphenyl)propylamine (0.168 g, 0.513 mmol) and 0.65 mL of 0.79 M n-Bu⁶Li in hexanes (0.513 mmol, 1.00 equiv) using the general procedure for crystallization from Me₂O (0.15 M solution). ⁶Li and ³¹P NMR spectra were acquired at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 equiv of HMPA (1 equiv = 80 µL). The probe temperature ranged from −127 to −137 °C. Spectra are shown in Fig. S-6. After the experiment was completed, the sample was quenched with 100 µL of Me₅SiCl.
(0.788 mmol, 1.53 equiv) to give 91% of [15N,N]-dimethyl-3-(2-trimethylsilylphenyl)propylamine by 1H NMR integration against pentachloroethane (30.0 µL, 0.249 mmol, 0.485 equiv) as a standard.

Figure S-6. 6Li and 31P NMR spectra of an HMPA titration experiment of 0.15 M [15N, 6Li]3 in 3:2 THF/Et\textsubscript{2}O at -127 to -137 °C (h = HMPA).
NMR Experiments Conducted on 2-(Methoxymethyl)phenyllithium (4)

Variable-Temperature 1H and 13C NMR Experiments on $[^6$Li]4. A sample of $[^6$Li]4 in 1.0 mL of THF, 0.5 mL of Et$_2$O, and 1.5 mL of Me$_2$O was prepared from 2-trimethylstannylbenzyl methyl ether (0.290 g, 1.02 mmol) and 0.68 mL of 1.54 M n-Bu$_6$Li in hexanes (1.05 mmol, 1.03 equiv) using the general procedure for crystallization from Me$_2$O (0.15 M solution). 1H spectra were acquired at -140, -126 and -75 °C, and 13C NMR at: -127, -116, -110, -106, -104, -98, -88, -81, -64 and -52 °C. Selected spectra and rate data are reported in Fig. 9.

HMPA Titration of $[^6$Li]4. A sample of $[^6$Li]4 in 2.1 mL of THF and 1.4 mL of Et$_2$O was prepared from 2-trimethylstannylbenzyl methyl ether (0.290 g, 1.02 mmol) and 0.68 mL of 1.54 M n-Bu$_6$Li in hexanes (1.05 mmol, 1.03 equiv) using the general procedure for crystallization from Me$_2$O (0.15 M solution). 6Li and 31P NMR spectra were acquired at 0, 0.5, 1, 2, 3 and 4 equiv of HMPA (1 equiv = 88 µL). The probe temperature ranged from -133 to -140 °C. Spectra are shown in Fig. S-8.

Interpretation of HMPA Titration of 4. In contrast to all other lithium reagents studied, no Li-P couplings could be detected for either the dimer or monomer HMPA complexes of 4 even at -140 °C, so assignment of the NMR spectra cannot be done unambiguously. Up to one equiv of HMPA mono-and bis-HMPA complexes of the dimer appear to be formed. At higher equivalents monomer HMPA complexes predominate, but there is a significant fraction of triple ion formed (38%) at 4 equiv of HMPA.

Figure S-7. 1H, 13C and 6Li NMR spectra of a 0.15 M solution of $[^6$Li]4 at -127 °C in 3:2:1 Me$_2$O/THF/Et$_2$O.
Figure S-8. 6Li and 31P NMR spectra of an HMPA titration of $[^4]$Li$_4$ in 3:2 THF/Et$_2$O at -133 to -140 °C. Firm assignment could not be made for most of the signals because of the absence of detectable Li-P coupling ($h =$ HMPA).

TMEDA Titration of $[^4]$Li$_4$. 2-Trimethylstannylbenzyl methyl ether (0.169 g, 0.593 mmol), 1.5 mL of THF and 0.5 mL of Et$_2$O were added to a dried and N$_2$-flushed 10 mm NMR tube. The NMR tube was cooled to -78 °C and 0.75 mL of 0.79 M n-Bu$^+$Li in hexanes (0.59 mmol, 0.99 equiv) was added to give a yellow solution. Addition of 1.0 mL of Me$_2$O gave an initial aryllithium concentration of 0.16 M. 13C NMR spectra were acquired at 0 and 6 equiv of TMEDA, 6Li NMR spectra at 0, 0.5, 1, 2, 4 and 6 equiv of TMEDA (1 equiv = 89 µL). The probe temperature ranged from -133 to -145 °C. Spectra are reported in Fig. S-9. After the experiment was completed, the sample was quenched with 100 µL of Me$_3$SiCl (0.788 mmol, 1.33 equiv) to give a 96 % yield of 2-trimethylsilylbenzyl methyl ether by 1H NMR integration against pentachloroethane (15.0 µL, 0.125 mmol, 0.211 equiv) as a standard.
Figure S-9. 6Li NMR spectra of a TMEDA titration of 0.16 M $[^6\text{Li}]_4$ in 3:2:1 THF/Me$_2$O/Et$_2$O at -133 to -145 °C.

Spectra of $[^6\text{Li}]_4$ with PMDTA Cosolvent. Titrations. A sample of $[^6\text{Li}]_4$ in 1.5 mL of THF, 0.5 mL of Et$_2$O and 1.0 mL of Me$_2$O was prepared from 2-trimethylstannylbenzyl methyl ether (0.144 g, 0.507 mmol) and 0.64 mL of 0.79 M n-Bu6Li in hexanes (0.51 mmol, 1.01 equiv) using the general procedure for crystallization from Me$_2$O (0.14 M solution). 13C NMR spectra were acquired at 0 and 1.52 equiv of PMDTA, 6Li NMR spectra at 0, 0.25, 0.5, 0.75, 1, 1.25 and 1.5 equiv of PMDTA (1 equiv = 106 µL). The probe temperature ranged from -137 to -150 °C. 6Li NMR spectra are reported in Fig. 8. After the experiment was completed, the sample was quenched with 100 µL of Me$_3$SiCl (0.788 mmol, 1.56 equiv) to give a 87 % yield of 2-trimethylsilylbenzyl methyl ether by 1H NMR integration against pentachloroethane (15.0 µL, 0.125 mmol, 0.246 equiv) as a standard.

Titration and Variable Temperature Study in 2:1 Me$_2$O/Et$_2$O. Et6Li$^{[22]}$ (35.0 mg, 1.0 mmol) was weighed into a 10 mm NMR in a N$_2$ filled dry box. The tube was sealed with a septum, removed from the box, cooled to -78 °C and Et$_2$O (2.0 mL) and 2-trimethylstannylbenzyl methyl ether (217 µL, 1.0 mmol) were added. Addition of Me$_2$O (1.0 mL) gave an initial aryllithium concentration of 0.33 M. 6Li and 13C NMR spectra were acquired at 0, 0.25, 0.5, 0.75, 1, 1.5 and 2.5 equiv of PMDTA at a probe temperature of -135 °C. Spectra are shown in Fig. 10a. At 0.75 equiv of PMDTA a variable temperature 6Li NMR study was performed, with spectra acquired at -151, -148, -145, -142, -139, -136, -133, -128, -125, -122, -119, -116 and -111 °C. Selected spectra are shown in Fig. 10b.

Variable Temperature 6Li NMR Study in 3:2:1 THF/Me$_2$O/Et$_2$O. A solution of $[^6\text{Li}]_4$ was prepared in a N$_2$ filled dry box by addition of Et6Li (37.0 mg, 1.06 mmol) to a solution of 2-trimethylstannylbenzyl methyl ether (230 µL, 1.06 mmol) in Et$_2$O (0.5 mL) at -78 °C in a 10 mm NMR tube. The tube was sealed with a septum, removed from the box, and warmed briefly to dissolve the Et6Li. Addition of THF (1.0 mL), Me$_2$O (1.5 mL) and 5 µL of (Me$_3$Si)$_3$CH$^{[9]}$ gave an initial aryllithium concentration of 0.33 M. An initial 13C
NMR spectrum was acquired and PMDTA (630 µL, 3.0 mmol, 3 equiv) was added. The variable
temperature experiment was monitored by 13C NMR spectroscopy with spectra acquired at -150, -144, -133,
-123, -99, and -74 °C. Spectra shown in Fig. S-10 and Fig. 11. Activation parameters are shown in Table S-2.

\[\text{Figure S-10. Variable temperature } {}^{13}\text{C NMR study of 0.33 M [}^{6}\text{Li}]4 \text{ containing 3.0 equiv of PMDTA in 3:2:1 THF/Me}_2\text{O/Et}_2\text{O.} \]
N-Methylbis-(2-methoxyethyl)amine Titration of [°Li]4. A 0.05 M solution of [°Li]4 was prepared from 2-2trimethylstannylbenzyl methyl ether (42 mg, 0.146 mmol), and 0.19 mL of 0.79 M n-Bu°Li. Increments of bis(2-dimethylaminoethyl)ether and methylbis(methoxyethyl)amine were added and 6Li spectra acquired at -142 °C (Fig. S-11).

Both of the tridentate cosolvents break up the dimer of 4, but the complexation in each case is weaker than with PMDTA, with less than 20% conversion to monomer for the former and ca 2% conversion to monomer for the latter at 1 equiv of the cosolvent. In comparison, PMDTA converts >90% of 4 to the complexes 12 and 13 at 1 equiv of PMDTA. The only indication of dimeric complexes analogous to 12 was significant broadening of the dimer signal with methylbis(2-methoxyethyl)amine at -142 °C.

![Figure S-11. 6Li NMR spectra of the titration of 0.05 M [°Li]4 with: (a) bis(2-dimethylaminoethyl) ether in 3:2 THF/Et2O and (b) methylbis(2-methoxyethyl)amine in 3:2:1 THF/Me2O/Et2O at -142 to -147 °C.](image)

Variable Temperature Study 4-PhLi mixtures. Et°Li (56.0 mg, 1.6 mmol) was weighed into a 10 mm NMR tube in a N2 filled dry box. The tube was sealed with a septum, removed from the box, cooled to -78 °C and Et2O (1.2 mL), PhSnMe3 (146 µL, 0.80 mmol), 2-trimethylstannylbenzyl methyl ether (176 µL, 0.81 mmol) and 4 µL of (Me3Si)3CH[1j] were added. Addition of THF (1.8 mL) gave an initial aryllithium concentration of 0.27 M [°Li]4 and 0.27 M [°Li]PhLi. 6Li and 13C NMR were acquired at -137, -127, -115, -102, -97, -89, -83, -78 and -66 °C. A 3-spin line shape simulation of the spectra was done using WINDNMR.[1k] The spectra, DNMR line shape simulations and kinetic analysis are shown in Fig. 12 and Fig. S-12. The sample was diluted by a factor of 4 (1.0 mL of solution with 1.2 mL of Et2O and 1.8 mL of THF) and 13C and 6Li NMR spectra were acquired at -137, -127, -115, -102, -97, -89, -83, -78 and -66 °C.
Spectra are shown in Fig. S-12c.

Figure S-12. Variable temperature NMR spectroscopic studies of 1:1 mixture of 6Li$_4$ and 6LiPhLi in 3:2 THF/Et$_2$O. (a) and (b) 13C and 6Li NMR spectra of a solution 0.27 M in each ArLi. (c) 6Li NMR spectra of a solution 0.07 M in each ArLi.
NMR Experiments Conducted on 2-(2-Methoxyethyl)phenyllithium (5)

Figure S-13. 13C and 6Li NMR spectra of 0.08 M [6Li]$_5$ in 3:2 THF/Et$_2$O solvent at -125 to -130 °C.

Variable Concentration Experiment of [6Li]$_5$. A sample of 2-(2-trimethylstannylphenyl)ethyl methyl ether (164 mg, 0.55 mmol) in 1.2 mL of Et$_2$O was cooled to -78 °C in a dry, N$_2$-purged 10 mm NMR tube and 344 µL of 1.60 M n-Bu6Li in pentane (0.55 mmol) was slowly added. Precipitation of a white solid occurred within minutes. The sample was stored overnight and the solvent removed by cannula. The solid was washed with 3 mL of Et$_2$O and then dissolved in 1.8 mL of THF, 1.2 mL of Et$_2$O and 2.5 µL of (Me$_3$Si)$_3$CH.$^{[1]}$ 13C and 6Li spectra were acquired at -121 °C. The sample was diluted (1:1) by addition of 1.8 mL of THF and 1.2 mL of Et$_2$O at -78 °C and 13C and 6Li spectra were acquired at -121 °C. The final dilution (1:1) was accomplished by removing half of the solution via syringe and then adding 1.8 mL of THF and 1.2 mL of Et$_2$O. Spectra and analysis are reported in Fig. S-14. The ratio of the two 6Li NMR peaks of the two dimers $5D$ and $5D'$ are concentration independent (D/D' = 4.19, 4.03, 4.73, top to bottom), whereas the ratio of $5M$/$5D$+$5D'$ varied as expected for dimer and monomer (0.028, 0.041, 0.057). Our best value for K_{MD} is 11,000 M$^{-1}$ at -121 °C in 3:2 THF/Et$_2$O.
Variable-Temperature 6Li NMR Experiment of $[^6$Li]5 in 3:2 THF/Et$_2$O. Et6Li (9.8 mg, 0.28 mmol) was weighed into a 10 mm NMR tube in a N$_2$ filled dry box. The tube was sealed with a septum and removed from the box. The tube was cooled to -78 °C and Et$_2$O (2.0 mL), 2-(2-trimethylstannylphenyl)ethyl methyl ether (66 µL, 0.28 mmol), and 5 µL of (Me$_3$Si)$_3$CH$[^1j]$ were added. Addition of THF (3.0 mL) gave an initial aryllithium concentration of 0.056 M. 6Li and 13C NMR spectra were acquired at -123, -120, -114, -108, -101, -91, -84, -64 and -42 °C.

After this experiment 1.0 mL of the solution was diluted with Et$_2$O (1.2 mL) and THF (1.8 mL) in a second dried and N$_2$-flushed 10 mm NMR tube to give a clear, pale yellow 0.014 M solution (higher dilution was needed to observe the monomer signal). Results of the variable temperature experiment (13C and 6Li NMR spectroscopy) as well as a 3-spin line shape simulation$[^{1k}]$ the kinetic scheme and exchange matrix are shown in Fig. S-15, excerpts are shown in Fig. 13.
Figure S-15. Variable temperature 6Li DNMR experiment on 0.014 M $[^6$Li]5 in 3:2 THF/Et$_2$O. The upper spectrum in each pair is the simulation using the rate constants shown$^{[1k]}$ ($k_{D'M}$ was set equal to k_{DM}).

TMEDA Titration of $[^6$Li]5. A pure sample of $[^6$Li]2-(2-methoxyethyl)phenyllithium was prepared by the general procedure for the crystallization and purification of aryllithium reagents for NMR in Me$_2$O, using 0.151 g (0.51 mmol) of 2-trimethylstannylphenethyl methyl ether and 0.65 mL of 0.79 M n-Bu6Li in hexanes (0.51 mmol, 1.03 equiv). The white powder was dissolved in 1.5 mL of THF, 0.8 mL of Et$_2$O, and 1.0 mL of Me$_2$O to give a clear, pale yellow 0.17 M solution. A TMEDA titration of the 6Li-labeled ArLi was conducted on the sample, monitored by 6Li NMR spectroscopy with spectra acquired at 0, 0.5, 1, 2, 3, 4, 6 and 8 equiv of TMEDA (1 equiv = 40 µL) at a probe temperature of −147 °C. Spectra are shown in Fig. S-16. After the experiment was completed, the sample was quenched with 130 µL of Me$_3$SiCl (1.02 mmol, 2.03 equiv) to give a 90 % yield of 2-(2-trimethylsilylphenyl)ethyl methyl ether by 1H NMR integration against pentachloroethane (30.5 µL, 0.253 mmol, 0.501 equiv) as a standard.
Figure S-16. 6Li NMR study of the effect of treating a solution of $[^6$Li]5 in 3:2:1 THF/Me$_2$O/Et$_2$O with (a) TMEDA

PMDTA Titration of [6Li]5. A sample identical to the one above was used for a PMDTA titration experiment, monitored by 6Li NMR spectroscopy with spectra acquired at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 equiv of PMDTA (1 equiv = 105 µL) at a probe temperature of -147 °C. Spectra are shown in Fig. 8c. After the experiment was completed, the sample was quenched with 130 µL of Me$_3$SiCl (1.02 mmol, 2.03 equiv) to give an 88% yield of 2-(2-trimethylsilylphenyl)ethyl methyl ether by 1H NMR integration against pentachloroethane (30.0 µL, 0.249 mmol, 0.497 equiv) as a standard.

Variable Temperature PMDTA Titration of [6Li]-5. A sample of (2-trimethylstannylphenyl)ethyl methyl ether (132 mg, 0.44 mmol), THF (1.8 mL), Et$_2$O (1.2 mL) and (Me$_3$Si)$_3$CH (4 µL) was cooled to -78 °C in a dry, N$_2$-purged 10 mm NMR tube and 276 µL of 1.6 M n-Bu6Li (0.44 mmol) were added. The 0.10 M sample was monitored by 6Li and 13C NMR spectroscopy at 0.5 and 2.1 equivalents of PMDTA (addition of 46 and 92 µL of PMDTA) at temperatures from -132.8 to -48.4 °C. The ArLi concentration was determined by assuming that the PMDTA concentration was accurate, and measuring the fraction of 5M-PMDTA and 5D by line shape simulation of the 13C NMR spectra. The concentration of free PMDTA was determined by measuring the ratio of free to complexed PMDTA by simulation of the 13C NMR spectrum. Spectra are shown in Fig. S-17. The PMDTA dynamics of Fig. S-17a were determined by a 3-spin DMRN simulation. The rate k_{diss} in Fig. S-17a is the rate of conversion of 5-PMDTA to 5D. Since this process probably involves dissociation of 5-PMDTA to 5M, which then forms 5D and 5D’, k_{diss} does not correspond to a physically real rate, but is a composite and thus cannot be directly compared to the rate k_{diss} determined in Fig. S-17b (6-spin DMRN simulation of the CH$_2$ carbons of the PMDTA ligand) which is a physically real rate. Activation parameters are shown in Table S-2.

The data in Scheme 4 was obtained from a sample which was 0.10 M in total ArLi containing 2.1 equiv of PMDTA. This sample showed a 88/12 ratio of 5M-PMDTA to 5D, and a 58/42 ratio of free to complexed PMDTA (0.085 M 5M-PMDTA, 0.0057 M 5D and 0.12 M free PMDTA).
Figure S-17. Variable temperature study of a 0.10 M solution of 5 in 3:2 THF/Et2O in the presence of PMDTA. The upper trace at each temperature is an appropriate DNMR simulation using the rate constants shown in sec$^{-1}$ for interconversion of isomeric dimers ($k_{\text{DD'}}$), ligand symmetrization (k_{symm}) and ligand dissociation (k_{diss}) conversion of 5-PMDTA to 5 in the left panel, and conversion of complexed to free PMDTA for the right panel).[1k] (a) 0.5 equiv of PMDTA; (b) 2.1 equiv of PMDTA.
HMPA Titration of \(^{6}\text{Li}\)5. A pure sample of \(^{6}\text{Li}\)5 was prepared by the general procedure for the crystallization and purification of aryllithium reagents for NMR using 1.0 mL of Me\(_2\)O, 0.197 g of 2-(2-trimethylstannylphenyl)ethyl methyl ether (0.66 mmol) and 0.85 mL of 0.79 M \(n\)-Bu\(^{6}\text{Li}\) in hexanes (0.67 mmol, 1.02 equiv). The white powder was dissolved in 1.8 mL of THF and 1.2 mL of Et\(_2\)O to give a clear, colorless 0.08 M solution. \(^{6}\text{Li}\) and \(^{31}\text{P}\) NMR spectra were acquired at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 equiv of HMPA (1 equiv = 40 \(\mu\)L) at a probe temperature of -125 to -130 °C. Spectra are shown in Fig. S-18.

![Figure S-18](image)

Figure S-18. \(^{6}\text{Li}\) NMR spectra of an HMPA titration of 0.08 M \(^{6}\text{Li}\)5 in 3:2 THF/Et\(_2\)O at -125 to -130 °C (\(h = \text{HMPA}\)).

Variable Temperature Study of 5-PhLi Mixtures. Et\(^{6}\text{Li}\) (38.0 mg, 1.09 mmol) was weighed into a 10 mm NMR tube in a \(N_2\) filled dry box. The tube was sealed with a septum and removed from the box. The tube was cooled to -78 °C and Et\(_2\)O (1.2 mL), PhSnMe\(_3\) (98 \(\mu\)L, 0.54 mmol), 2-(2-trimethylstannylphenyl)ethyl methyl ether (128 \(\mu\)L, 0.54 mmol) and 4 \(\mu\)L of \((\text{Me}_3\text{Si})_3\text{CH}^{(1)}\) were added. Addition of THF (1.8 mL) gave an initial aryllithium concentration of 0.18 M in \(^{6}\text{Li}\)PhLi and 0.18 M in \(^{6}\text{Li}\)5. The variable temperature experiment was monitored by \(^{6}\text{Li}\) and \(^{13}\text{C}\) NMR spectroscopy with spectra acquired at -129, -124, -118, -112, -107, -102, -96, -91, -79 and -74 °C. Spectra are shown in Fig. S-19.

The sample was diluted by a factor of 16 by mixing 0.25 mL of the solution with Et\(_2\)O (1.5 mL) and THF (2.25 mL) in a second dried and \(N_2\)-flushed 10 mm NMR tube to give a clear, pale yellow solution of 0.011 M in \(^{6}\text{Li}\)PhLi and 0.011 M in \(^{6}\text{Li}\)5. A second variable temperature experiment was monitored by \(^{13}\text{C}\) and \(^{6}\text{Li}\) NMR spectroscopy with spectra acquired -124, -118, -112, -107, -102, -96, -91, -79 and -74 °C.
Spectra are shown in Fig. S-19 and Fig. 14, line shape simulations and data analysis are shown in Fig. 15.

Figure S-19. 6Li NMR spectra of variable temperature study of 5 + PhLi in 3:2 THF/Et₂O. The spectra on the left have a concentration of 0.18 M 5 and 0.18 M PhLi. The spectra on the right have a concentration of 0.011 M 5 and 0.011 M PhLi. The 6Li NMR of 0.2 M PhLi in 4:1 THF/Et₂O at -130 °C (a), and 0.014 M 5 in 3:2 THF/Et₂O at -128 °C (b) are shown for comparison. 5D and 5D' are the two isomeric dimers of 5, 5M is the monomer of 5.

Line shape simulations of the 5-PhLi System. Because all of the reacting partners were detectable in the 0.011 M mixed dimer solution, it was possible to do a mechanistically correct simulation of the spectra. The proposed exchange scheme is shown in Fig. S-20a and involves only dissociation of the three dimers (5, 15, (PhLi)₂) to the two monomers, and reassociation of these to form the dimers. The exchange matrix used for the simulation using WINDNMR[1k] is shown in Fig. S-20b. A complete set of output data for simulation obtained from the program is given in Table S-1.
Figure S-20. (a) Kinetic scheme assumed for the simulations of the mixed dimer DNMR spectra. The rate constants shown are the ones directly manipulated during the simulation (top-right half of the exchange matrix), the reverse rates are automatically determined by the program from the forward rates and the populations. (b) Exchange matrix used to implement the exchange scheme, and which produced the line shape simulations shown in Fig. 15.

\[
\begin{array}{ccccccc}
15 & 5D & 5D' & (PhLi)_2 & 5M & (PhLi)_1 \\
A & B & C & D & E & F \\
15 & A & [i2\pi(\Delta \nu_A)] & 0 & 0 & 0 & k_{AE} & k_{AF} \\
5D & B & 0 & [i2\pi(\Delta \nu_B)] & k_{BC} & 0 & k_{BE} & 0 \\
5D' & C & 0 & k_{CB} & [i2\pi(\Delta \nu_C)] & 0 & k_{BE} & 0 \\
(PhLi)_2 & D & 0 & 0 & 0 & [i2\pi(\Delta \nu_D)] & 0 & k_{DF} \\
5M & E & k_{EA} & k_{EB} & k_{EB} & 0 & [i2\pi(\Delta \nu_E)] & 0 \\
(PhLi)_1 & F & k_{FA} & 0 & 0 & k_{FD} & 0 & [i2\pi(\Delta \nu_F)] \\
\end{array}
\]

\[\Sigma k \text{ is the sum of the rate constants in that row} \]
\[1/T \text{ is the line width in the absence of exchange}\]
Table S-1. Output Data from the Simulation of Mixed dimer 15 exchange (0.011 M 5, 0.011 M PhLi).

<table>
<thead>
<tr>
<th>SimNum:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename:</td>
<td>4209.009</td>
<td>4209.006</td>
<td>4209.004</td>
<td>4209.002</td>
<td>4209.011</td>
<td>4209.013</td>
<td>4209.015</td>
<td>4209.016</td>
</tr>
<tr>
<td>Temp K:</td>
<td>149.0</td>
<td>161.0</td>
<td>171.0</td>
<td>180.0</td>
<td>199.0</td>
<td>207.0</td>
<td>221.0</td>
<td>232.0</td>
</tr>
<tr>
<td>Temp C:</td>
<td>-124.2</td>
<td>-112.2</td>
<td>-102.2</td>
<td>-93.2</td>
<td>-74.2</td>
<td>-66.2</td>
<td>-52.2</td>
<td>-41.2</td>
</tr>
<tr>
<td>Va</td>
<td>379.680</td>
<td>381.280</td>
<td>383.030</td>
<td>384.220</td>
<td>384.600</td>
<td>385.880</td>
<td>387.350</td>
<td>388.926</td>
</tr>
<tr>
<td>Vb</td>
<td>382.250</td>
<td>384.118</td>
<td>385.550</td>
<td>387.642</td>
<td>388.530</td>
<td>389.812</td>
<td>391.292</td>
<td>392.869</td>
</tr>
<tr>
<td>Vc</td>
<td>371.700</td>
<td>373.300</td>
<td>374.900</td>
<td>375.692</td>
<td>376.580</td>
<td>377.862</td>
<td>379.342</td>
<td>380.915</td>
</tr>
<tr>
<td>Vd</td>
<td>371.330</td>
<td>372.930</td>
<td>374.530</td>
<td>376.232</td>
<td>377.120</td>
<td>378.402</td>
<td>379.882</td>
<td>381.459</td>
</tr>
<tr>
<td>Ve</td>
<td>353.560</td>
<td>355.160</td>
<td>356.760</td>
<td>357.862</td>
<td>358.750</td>
<td>360.032</td>
<td>361.512</td>
<td>363.089</td>
</tr>
<tr>
<td>Vf</td>
<td>348.518</td>
<td>350.340</td>
<td>351.940</td>
<td>353.642</td>
<td>354.530</td>
<td>355.812</td>
<td>357.292</td>
<td>358.869</td>
</tr>
<tr>
<td>k</td>
<td>0.030</td>
<td>0.250</td>
<td>1.030</td>
<td>5.810</td>
<td>43.710</td>
<td>78.010</td>
<td>350.310</td>
<td>909.010</td>
</tr>
<tr>
<td>kab/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kac/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kad/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kae/k</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>kaf/k</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>kbc/k</td>
<td>21.000</td>
<td>33.000</td>
<td>23.200</td>
<td>30.600</td>
<td>27.000</td>
<td>23.000</td>
<td>26.000</td>
<td>26.000</td>
</tr>
<tr>
<td>kbd/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kbe/k</td>
<td>0.200</td>
<td>0.200</td>
<td>0.120</td>
<td>0.130</td>
<td>0.100</td>
<td>0.090</td>
<td>0.058</td>
<td>0.060</td>
</tr>
<tr>
<td>kbf/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kcd/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kce/k</td>
<td>0.200</td>
<td>0.200</td>
<td>0.120</td>
<td>0.130</td>
<td>0.100</td>
<td>0.090</td>
<td>0.058</td>
<td>0.060</td>
</tr>
<tr>
<td>kcf/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kde/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>kdf/k</td>
<td>74.000</td>
<td>62.000</td>
<td>53.640</td>
<td>31.400</td>
<td>63.000</td>
<td>63.000</td>
<td>48.000</td>
<td>63.000</td>
</tr>
<tr>
<td>kef/k</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>% a</td>
<td>42.041</td>
<td>40.710</td>
<td>39.070</td>
<td>33.010</td>
<td>32.300</td>
<td>32.430</td>
<td>32.322</td>
<td>32.328</td>
</tr>
<tr>
<td>% b</td>
<td>25.310</td>
<td>26.010</td>
<td>29.270</td>
<td>33.280</td>
<td>34.030</td>
<td>33.470</td>
<td>33.522</td>
<td>33.408</td>
</tr>
<tr>
<td>% e</td>
<td>1.954</td>
<td>1.530</td>
<td>1.668</td>
<td>0.568</td>
<td>0.584</td>
<td>0.780</td>
<td>0.682</td>
<td>0.980</td>
</tr>
<tr>
<td>Wa</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Wb</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Wc</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Wd</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>We</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Wf</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Right-Hz</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
<td>313.765</td>
</tr>
<tr>
<td>WdthHz</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
<td>102.008</td>
</tr>
</tbody>
</table>

Determination of 13C Coupling Constants (JCOC and JCOCC) of 4 and Analogs. A sample of 2-trimethylstannylenzyl methyl-13C ether (38.0 mg, 0.13 mmol) in 0.45 mL THF and 0.30 mL Et2O was cooled to -78 °C in a dry, N2-purged 5 mm NMR tube and 2.58 M n-BuLi in hexane (62 µL, 0.16 mmol) was slowly added. A proton decoupled 13C NMR spectrum was acquired at 11 °C. Sample spectra are shown in Fig. S-21. The sample was then quenched with Me3SiCl (20.3 µL, 0.16 mmol) and a 13C NMR spectrum was acquired at 11 °C. The coupling constants were determined using natural line widths (no Lorenzian line broadening) and two zero fills. The JCOC of 4 was determined by line shape simulation of the NMR spectrum. Data is shown in Fig. 16.
Figure S-21. Sample 13C NMR spectra of 13CH$_3$-O labeled 4 and analogs.

Determination of 13C Coupling Constants (J_{COC} and J_{COCC}) 5 and its Analogs. A sample of 2-(2-bromophenyl)ethyl methyl-13C ether (26.4 mg, 0.12 mmol) in 0.45 mL THF and 0.30 mL Et$_2$O was cooled to -78 °C in a dry, N$_2$-purged 5 mm NMR tube and 1.8 M t-BuLi in hexane (150 µL, 0.27 mmol) was slowly added. A 13C NMR spectrum was acquired at 11 °C. The sample was quenched with MeI (9.0 µL, 0.14 mmol) and a 13C NMR spectrum was acquired at 11 °C. The coupling constants were determined using natural line widths (no Lorenzian line broadening) and two zero fills. The J_{COC} of 5 was determined by line shape simulation of the NMR spectrum.
NMR Experiments Conducted on 2-(3-Methoxypropyl)phenyllithium (6)

\[
\begin{align*}
&\text{13C} \\
&\delta_{\text{C1}} = 121.1, 121.7, 123.6, 142.5, 195.6, 152.9, 73.8, 58.5 \\
&\delta_{\text{Li}} = 1.28, 1.29 \\
&\text{6Li} \\
&\ \text{(ArLi)}_1, J = 15 \text{ Hz} \\
&\text{6D} \\
&\text{6M}
\end{align*}
\]

\[
\begin{align*}
\text{ppm} & \text{ ppm} & \text{ppm} \\
196 & 195 & 4.0 \\
195 & 194 & 3.0 \\
194 & 193 & 2.0 \\
193 & 192 & 1.0 \\
192 & 191 & 0.0 \\
191 & 190 & -1.0
\end{align*}
\]

\[\delta_{\text{Li}} = 1.28, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29, 1.29\]

Figure S-22. 13C and 6Li NMR spectra of 0.08 M 6 in 3:2 THF/Et$_2$O solvent at -125 °C.

Variable Temperature 6Li NMR Study of [6Li]6. A sample of 3-(2-trimethylstannylphenyl)propyl methyl ether (155 mg, 0.496 mmol), THF (1.5 mL) and Et$_2$O (0.5 mL) in a dry, N$_2$-purged 10 mm NMR tube was cooled to -78 °C and 0.62 mL of 0.79 M n-Bu6Li in hexanes (0.49 mmol) was added. Me$_2$O (1.0 mL) was added and the sample was stored overnight at -78 °C. 6Li NMR spectra were acquired at -140, -133, -127, -120, -114, -107, -101, -88 and -81 °C. Selected spectra and 2-spin line shape simulations are shown in Fig. S-23.
Figure S-23. Variable temperature 6Li NMR study of 0.135 M 6 in 3:2:1 THF/Me$_2$O/Et$_2$O. The second trace at -101 and -107 °C are 2-spin DNMR simulations to determine the dimer dissociation rate. The rate constants are the NMR rates, the physical rate constants for dimer dissociation are 0.5 times the values shown.

Variable Temperature and Concentration Study of [Li]6 in Et$_2$O and 3:2 THF/Et$_2$O. Five samples of 6 were prepared as follows: Sample 1 (0.61 M [Li]6 in Et$_2$O) To a 10 mL round bottom flask under N$_2$ was added 63.9 mg of Et6Li, 3.0 mL of Et$_2$O, 5 µL of (Me$_3$Si)$_3$CH and 472 µL (1.83 mmol) of 3-(2-trimethylstannylphenyl)propyl methyl ether. Sample 2: (0.10 M in Et$_2$O) 0.5 mL of Sample 1 and 2.5 mL of Et$_2$O. Sample 3 (0.24 M in 3:2 THF/Et$_2$O): 1.2 mL of Sample 1 and 1.8 mL of THF. Sample 4 (0.08 M in 3:2 THF/Et$_2$O): 1.0 mL of Sample 3, 1.8 mL of THF, 1.2 mL of Et$_2$O and 2 µL of (Me$_3$Si)$_3$CH. Sample 5 (0.2 M in 3:2 THF/Et$_2$O): 1.0 mL of Sample 1 and 1.5 mL of THF.

6Li and 13C spectra were taken of Samples 2-4 between -141 and -89 °C. Partial spectra are presented in Fig. S-24 and Fig. 17. The 6Li spectra of the 0.25 M and 0.08 M (Samples 3 and 4) at -141 °C were integrated by line shape fitting, and used to determine the concentration dependence of the three signals (X, Y, Z and monomer). The graphed results, shown in Fig. S-25, demonstrate that the X, Y, Z peaks are dimeric relative to the peak at δ 1.1 (the monomer).
Figure S-24. 6Li and 13C NMR spectra (C-Li region) of a variable temperature study of $[^6$Li]6M. (a) Spectra of a 0.10 M solution in Et$_2$O (Sample 2). The inset for the 6Li NMR spectrum at -109 °C is a 2-spin simulation to estimate the rate of interconversion of the X and Y dimers. (b) Spectra of Sample 3 (of 0.24 M in 3:2 THF/Et$_2$O). The inset shows an expansion of the monomer 1:1:1 triplet ($J_{CLi} = 15$ Hz). The value for K_{MD} ($[D]/[M]^2$) was obtained by line-shape simulation of the 6Li spectrum at -141 °C.
Figure S-25. Logarithmic plot of the areas of the 6Li signal at δ 1.1 (6M) versus the X, Y, Z signals of 6D at δ 1.4-1.7.

TMEDA Titration of 6Li6 in 3:2 THF/Et₂O. Increments of TMEDA (30 µL/0.25 equiv) were added to Sample 5 from the above experiment and 6Li and 13C NMR spectra were taken. Data, simulations and analysis are reported in Fig. 18.

PMDTA Titration of 6Li6. A 0.14 M solution of 6Li6 in 3:2 THF/Et₂O was prepared from 0.158 g (0.505 mmol) of 3-(2-trimethylstannylphenyl)propyl methyl ether, 0.79 M n-Bu6Li in hexanes (0.51 mmol, 1.00 equiv), 1.8 mL of THF and 1.2 mL of Et₂O at −78 °C. The sample was stored overnight at −78 °C. The PMDTA titration experiment (0, 0.25, 0.5, 0.75 and 1 equiv, 105 µL PMDTA per equiv) was monitored by 6Li NMR spectroscopy at −125 °C (Fig. S-26). After the experiment was completed, the sample was quenched with 100 µL of Me₃SiCl (0.788 mmol, 1.56 equiv) to give a 92 % yield of 3-(2-trimethylsilylphenyl)propyl methyl ether by 1H NMR integration against pentachloroethane (30.0 µL, 0.249 mmol, 0.494 equiv) as a standard.
Figure S-26. 6Li NMR spectra of a PMDTA titration experiment of 0.14 M 6 in 3:2 THF/Et₂O at -125 °C).
NMR Experiments Conducted on 2-Ethylphenyllithium (7)

Variable Concentration Experiment of 2-Ethylphenyllithium (7). A sample of 2-ethyltrimethylstannylbenzene (333 mg, 1.24 mmol) in 1.0 mL of Et₂O was cooled to -78 °C in a dry, N₂-purged 10 mm NMR tube and 474 µL of 2.62 M n-BuLi in hexane (1.24 mmol) was slowly added. The lithium reagent proved to be soluble in Et₂O. However, upon addition of 1.5 mL of THF, crystals formed overnight. The solvent was removed via cannula and the crystal were dissolved in 1.2 mL of THF and 0.8 mL of Et₂O after warming slightly. The temperature of the various spectra were determined using 2.5 µL of the internal chemical shift thermometer, (Me₃Si)₃CH.[1] ¹³C and ⁶Li NMR spectra were acquired at -140 °C. The sample was diluted (1:1) with 1.2 mL of THF and 0.8 of mL Et₂O. The final dilution (1:1) was accomplished by removing half of the sample by syringe followed by the addition of 1.2 mL of THF and 0.8 mL of Et₂O. The final sample concentration (0.14 M) was determined by benzaldehyde quench (130 µL, 1.3 mmol) and ¹H NMR integration relative to an internal pentachloroethane standard (30 µL, 0.25 mmol). Spectra are shown in Fig. S-28. The aggregation difference between 7M and 7D was measured as 1.7.

Figure S-27. ¹³C and ⁶Li NMR spectra of 0.57 M 7 in 3:2 THF/Et₂O solvent at -140 °C.
Variable Temperature PMDTA Titration of [6Li]-7. A sample of 2-ethyltrimethylstannylbenzene (131 mg, 0.49 mmol), THF (1.8 mL), Et₂O (1.2 mL) and (Me₃Si)₃CH (4 μL) was cooled to -78 °C in a dry, N₂-purged 10 mm NMR tube and 304 μL of 1.6 M n-Bu₆Li (0.49 mmol) were added. 51, 42, and 56 μL of PMDTA were added (0.6, 1.06 and 1.9), and ⁶Li and ¹³C NMR spectra were measured at temperatures from -134.4 to -67.2 °C after each addition. The concentration of 7 was determined by assuming that the PMDTA concentrations were accurate, and determining the fraction of 7M-PMDTA and 7M by line shape simulation of the ¹³C and/or ⁶Li spectra. Spectra are shown in Fig. S-29. The PMDTA dynamics were determined by a 2-spin DNMR simulation of the ⁶Li NMR spectra at 0.6 equiv of PMDTA (Fig. S-29a) and a 6-spin DNMR simulation of the CH₂ carbons of the PMDTA ligand with 1.9 equiv of PMDTA (Fig. S-29b). Activation parameters are shown in Table S-2.

The data in Scheme 4 was obtained from a sample which was 0.13 M in total ArLi containing 1.06 equiv of PMDTA. This sample showed a 96/4 ratio of 7M-PMDTA to 7M, and a 9.5/90.5 ratio free to complexed PMDTA (0.122 M 7M-PMDTA, 0.0051 M 7M and 0.012 M free PMDTA).
Figure S-29. Variable temperature 6Li and 13C NMR study of a 0.13 M solution of $[^6$Li]7 in 3:2 THF/Et$_2$O in the presence of PMDTA. The upper trace at each temperature is an appropriate DNMR simulation using the rate constants shown in sec$^{-1}$ for ligand symmetrization (k_{sym}) and ligand dissociation (k_{diss}, conversion of 7M-PMDTA to 7M in the left panel, and conversion of complexed to free PMDTA for the right panel)$^{[1k]}$. (a) 0.6 equiv of PMDTA; (b) 1.9 equiv of PMDTA.

Table S-2. Rates and Activation Parameters for the Dynamics of the PMDTA Complexes of 4, 5 and 7.
Symmetrization

- k_{symm} (sec$^{-1}$)
- $\Delta G^{+} (\text{kcal/mol})$
- $\Delta H^{+} (\text{kcal/mol})$
- $\Delta S^{+} (\text{eu})$

<table>
<thead>
<tr>
<th>4M-PMDTA$^{[a]}$</th>
<th>5M-PMDTA$^{[b]}$</th>
<th>7M-PMDTA$^{[c]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>52,100</td>
<td>3490</td>
<td>820</td>
</tr>
<tr>
<td>6.21</td>
<td>7.14</td>
<td>7.64</td>
</tr>
<tr>
<td>4.03±0.36</td>
<td>5.42±0.26</td>
<td>4.43±0.04</td>
</tr>
<tr>
<td>-12.6±2.6</td>
<td>-10.0±1.6</td>
<td>-18.54±2.4</td>
</tr>
</tbody>
</table>

Dissociation

- k_{diss} (sec$^{-1}$)
- $\Delta G^{+} (\text{kcal/mol})$
- $\Delta H^{+} (\text{kcal/mol})$
- $\Delta S^{+} (\text{eu})$

710	34	23.8
7.69	8.74	8.86
6.66±0.14	7.06±0.1	-12.0±0.7
		-10.38±1

$^{[a]}$ For spectra see Fig. S-10. $^{[b]}$ For spectra see Fig. S-17. $^{[c]}$ For spectra see Fig. S-29.

Preparation of PhLi and Determination of K_{MD} in 3:2 THF/Et$_2$O. PhLi was prepared as previously reported.$^{[S-7]}$ 100 µL of 1.35 M PhLi in Et$_2$O (0.135 mmol) was added to a dry, N$_2$-purged 10 mm NMR tube at -78 °C. THF (1.8 mL) and Et$_2$O (1.1 mL) were added along with 2.5 µL of (Me$_3$Si)$_3$CH$^{[1j]}$ to give a final concentration of 0.045 M PhLi. 13C and 6Li NMR spectra were acquired at -129 °C. K_{MD} (210 M$^{-1}$) was determined by line shape simulation of the 6Li NMR spectrum (Fig. S-30).

Figure S-30. 6Li NMR spectrum of 0.045 M PhLi at -129 °C. The second trace is a simulation, the third trace a difference spectrum (spectrum-simulation).
Table S-3. 13C NMR chemical Shifts of 2-Alkylphenyllithium Reagents.

<table>
<thead>
<tr>
<th>Solv.</th>
<th>T</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
<th>XCH$_3$</th>
<th>CH$_2$X</th>
<th>δ_{Li}</th>
<th>$\mathrm{J}_{\mathrm{CLi}}$ ($^6\mathrm{Li}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomers:</td>
<td></td>
</tr>
<tr>
<td>(PhLi)$_1$</td>
<td>THF -111</td>
<td>196.4</td>
<td>143.2</td>
<td>124.1</td>
<td>120.7</td>
<td>124.1</td>
<td>143.2</td>
<td>---</td>
<td>---</td>
<td>1.15</td>
<td>15.3$^{</td>
</tr>
<tr>
<td>(PhLi)$_1$·PMDTA$^{</td>
<td>b</td>
<td>}$</td>
<td>THF -125</td>
<td>196.5</td>
<td>143.8</td>
<td>124.0</td>
<td>120.7</td>
<td>124.0</td>
<td>143.8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(9)$_1$</td>
<td>THF -126</td>
<td>195.2</td>
<td>153.6</td>
<td>121.1</td>
<td>121.6</td>
<td>123.4</td>
<td>142.5</td>
<td>---</td>
<td>---</td>
<td>1.20</td>
<td>15.2$^{</td>
</tr>
<tr>
<td>(7)$_1$</td>
<td>THF -141</td>
<td>195.2</td>
<td>155.3</td>
<td>121.2$^*</td>
<td>$</td>
<td>121.6$^*</td>
<td>$</td>
<td>122.6$^*</td>
<td>$</td>
<td>142.5</td>
<td>---</td>
</tr>
<tr>
<td>(2)$_1$</td>
<td>THF -130</td>
<td>195.9</td>
<td>154.3</td>
<td>121.1$^*</td>
<td>$</td>
<td>121.8$^*</td>
<td>$</td>
<td>123.8$^*</td>
<td>$</td>
<td>142.6</td>
<td>46.3</td>
</tr>
<tr>
<td>(2)$_1$·PMDTA$^{</td>
<td>b</td>
<td>}$</td>
<td>THF -145</td>
<td>196.7</td>
<td>150.5</td>
<td>121.1$^*</td>
<td>$</td>
<td>121.9$^*</td>
<td>$</td>
<td>124.0$^*</td>
<td>$</td>
</tr>
<tr>
<td>(3)$_1$</td>
<td>THF -127</td>
<td>195.5</td>
<td>153.2</td>
<td>121.3$^*</td>
<td>$</td>
<td>121.6$^*</td>
<td>$</td>
<td>123.4$^*</td>
<td>$</td>
<td>142.4</td>
<td>46.1</td>
</tr>
<tr>
<td>(3)$_1$·PMDTA</td>
<td>THF -127</td>
<td>195.8</td>
<td>152.5</td>
<td>121.0$^*</td>
<td>$</td>
<td>121.8$^*</td>
<td>$</td>
<td>123.7$^*</td>
<td>$</td>
<td>142.2</td>
<td>---</td>
</tr>
<tr>
<td>(4)$_1$·PMDTA</td>
<td>THF -127</td>
<td>195.8</td>
<td>148.4</td>
<td>120.8$^*</td>
<td>$</td>
<td>121.7$^*</td>
<td>$</td>
<td>122.9$^*</td>
<td>$</td>
<td>142.6</td>
<td>58.6</td>
</tr>
<tr>
<td>(5)$_1$·PMDTA</td>
<td>THF -147</td>
<td>197.0</td>
<td>148.0</td>
<td>121.3$^*</td>
<td>$</td>
<td>122.2$^*</td>
<td>$</td>
<td>124.3$^*</td>
<td>$</td>
<td>142.1</td>
<td>58.6</td>
</tr>
<tr>
<td>(6)$_1$</td>
<td>THF -125</td>
<td>195.6</td>
<td>152.9</td>
<td>121.1$^*</td>
<td>$</td>
<td>121.7$^*</td>
<td>$</td>
<td>123.6$^*</td>
<td>$</td>
<td>142.5</td>
<td>58.5</td>
</tr>
<tr>
<td>(6)$_1$·PMDTA</td>
<td>THF -125</td>
<td>195.7</td>
<td>152.2</td>
<td>121.0$^*</td>
<td>$</td>
<td>121.8$^*</td>
<td>$</td>
<td>123.7$^*</td>
<td>$</td>
<td>142.3</td>
<td>58.6</td>
</tr>
<tr>
<td>Dimers:</td>
<td></td>
</tr>
<tr>
<td>(PhLi)$_2$</td>
<td>THF -111</td>
<td>188.2</td>
<td>144.5</td>
<td>124.6</td>
<td>123.0</td>
<td>124.6</td>
<td>144.5</td>
<td>---</td>
<td>---</td>
<td>1.59</td>
<td>7.9$^{</td>
</tr>
<tr>
<td>(7)$_2$</td>
<td>THF -141</td>
<td>186.6</td>
<td>157.3</td>
<td>123.7$^{</td>
<td>i</td>
<td>}$</td>
<td>144.0</td>
<td>123.7$^{</td>
<td>i</td>
<td>}$</td>
<td>144.0</td>
</tr>
<tr>
<td>(1)$_2$ (A)$^{</td>
<td>l</td>
<td>}$</td>
<td>THF -132</td>
<td>188.8</td>
<td>152.2</td>
<td>123.9$^*</td>
<td>$</td>
<td>123.4$^*</td>
<td>$</td>
<td>125.0$^*</td>
<td>$</td>
</tr>
<tr>
<td>(1)$_2$ (B)$^{</td>
<td>l</td>
<td>}$</td>
<td>THF -132</td>
<td>188.4</td>
<td>151.9</td>
<td>123.9$^*</td>
<td>$</td>
<td>123.5$^*</td>
<td>$</td>
<td>125.1$^*</td>
<td>$</td>
</tr>
<tr>
<td>(1)$_2$ (C)$^{</td>
<td>l</td>
<td>}$</td>
<td>THF -132</td>
<td>151.2</td>
<td>121.2</td>
<td>124.0$^*</td>
<td>$</td>
<td>123.2$^*</td>
<td>$</td>
<td>125.3$^*</td>
<td>$</td>
</tr>
<tr>
<td>(2)$_2$ (A)</td>
<td>THF -130</td>
<td>184.3</td>
<td>152.4</td>
<td>122.5$^*</td>
<td>$</td>
<td>124.0$^*</td>
<td>$</td>
<td>125.4$^*</td>
<td>$</td>
<td>144.1</td>
<td>44.2</td>
</tr>
<tr>
<td>(4)$_2$ (B/C)</td>
<td>THF -127</td>
<td>186.1</td>
<td>149.7</td>
<td>123.3$^*</td>
<td>$</td>
<td>123.5$^*</td>
<td>$</td>
<td>125.3$^*</td>
<td>$</td>
<td>143.1</td>
<td>58.9</td>
</tr>
<tr>
<td>(5)$_2$ (B/C)</td>
<td>THF -127</td>
<td>188.2</td>
<td>152.4</td>
<td>124.2$^*</td>
<td>$</td>
<td>122.9$^*</td>
<td>$</td>
<td>124.2$^*</td>
<td>$</td>
<td>143.2</td>
<td>58.7</td>
</tr>
<tr>
<td>(6)$_2$ (X)$^{</td>
<td>m</td>
<td>}$</td>
<td>Et$_2$O -126</td>
<td>188.0</td>
<td>152.8</td>
<td>122.6$^*</td>
<td>$</td>
<td>124.9$^*</td>
<td>$</td>
<td>124.5$^*</td>
<td>$</td>
</tr>
<tr>
<td>(6)$_2$ (Y)$^{</td>
<td>m</td>
<td>}$</td>
<td>Et$_2$O -126</td>
<td>186.8</td>
<td>153.7</td>
<td>122.4$^*</td>
<td>$</td>
<td>124.9$^*</td>
<td>$</td>
<td>124.5$^*</td>
<td>$</td>
</tr>
<tr>
<td>Tetramers:</td>
<td></td>
</tr>
<tr>
<td>(PhLi)$_4$</td>
<td>Et$_2$O -106</td>
<td>174.0</td>
<td>143.8</td>
<td>126.3</td>
<td>125.5</td>
<td>126.3</td>
<td>143.8</td>
<td>---</td>
<td>---</td>
<td>2.39</td>
<td>5.1</td>
</tr>
</tbody>
</table>

* Assignments not done
[a] Reference: 0.3 M LiCl in methanol.
[b] Ref. 1i.
[c] 1:1:1 Triplet.
[d] 2:1 THF/Me$_2$O.
[e] 45:25:30 THF/Me$_2$O/Et$_2$O.
[f] 3:2 THF/Et$_2$O.
[g] Calculated from a measured J_{C_7Li} coupling of 38.5 Hz.
[h] 3:2:1 THF/Me$_2$O/Et$_2$O.
[i] Signal not found.
[k] Splitting not resolved, coupling estimated from simulated spectra.
Supplementary Materials References