Problem Set 11 - 2014 - Answer

(a) The 60 MHz 1H NMR spectrum of phosphoenolpyruvate (PEP) is shown below. Analyze the multiplets and assign the couplings.

(b) The 100 MHz 1H NMR spectrum of PEP labeled 60% with 13C at the carboxyl carbon is shown below. Analyze the multiplets and assign the chemical shifts and couplings.

(c) The 60 MHz 1H NMR spectrum of PEP labeled with one deuterium atom is shown below. Draw the structure of the compound, include stereochemistry.
Problem R-306 (C_{10}H_{20}Sn). Below is the 33.54 MHz $^{119}\text{Sn}^1{\text{H}}$ NMR spectrum of a reaction product from the reaction shown (Quintard, J.-P.; Degueil-Castaing, M.; Dumartin, G.; Barbe, B.; Petraud, M. J. Orgmet. Chem. 1982, 234, 36):

\[
\begin{align*}
\text{OTs} & \quad \text{Me}_3\text{SnLi} \quad \text{Me}_3\text{SnH}, \\
\text{CH}_3 & \quad \text{SnMe}_3
\end{align*}
\]

Estimate the ratio of the four isomeric products from the NMR spectrum. All materials are racemic.

Each of the ^{119}Sn signals is coupled to the deuterium, to give overlapping 1:1:1 triplets

We would expect the $^2J_{\text{SnD}}$ (1-d) to be larger than $^4J_{\text{SnD}}$ (3-d).

The ratio of 3-d to 1-d is 1:1

The E to Z ratio is 48/100 (32/68)

This experiment was carried out to determine the mechanism of the nucleophilic substitution at carbon. A direct SN_2 substitution would have given only the E-3-d isomer (inversion at carbon), so either a carbonium ion (SN_1 through the allyl cation) or, more likely, a radical mechanism (SRN_1 through the allyl radical) is involved.

The \(^{77}\text{Se}\) NMR signal is an apparent \textit{ttt}, \(J = 47, 6, 3\) Hz from coupling to \(H_A, H_B\), and \(H_C\). The pattern is actually the \(X\) part of an AA'BB'CX spin system \((X = \text{Se})\), which is not strictly first order. Hence the somewhat irregular intensities of the peaks, and small additional splittings.
Problem R-64 \((\text{C}_{12}\text{H}_{10}\text{S})\). Below are four \(^{13}\text{C}\) NMR spectra (50 MHz). The upper spectra are of diphenyl sulfide (Ph\(_2\)S). The lower spectra are of Ph\(_2\)S partially deuterated. The left set of spectra are proton-decoupled, the right set is fully coupled. Have PLT

(a) Assign the resonances in the unlabelled spectra (C\(^1\), C\(^2\), C\(^3\), C\(^4\)).

\(^{13}\text{C}\) \((\text{^{1}H})\)

C\(^2\) and C\(^3\) can be distinguished because C\(^2\) is a doublet of triplets from coupling to two protons meta to it - only \(^{3}\text{J}_{\text{CH}}\) is large enough to resolve. C\(^3\) is a doublet of doublets.

(b) Assign the various peaks in the D-labelled spectra.

The signal at C\(^2\) (\(\delta\) 131) shows a 1:1:1 triplet, with an upfield isotope shift of ca 0.5 ppm for the C-D carbon. Thus D must be C\(^2\).

The signal at C\(^3\) (\(\delta\) 139) also shows an isotope shift. Thus D must be C\(^2\) or C\(^4\).

(c) Determine the position(s) and roughly estimate the extent of deuteration indicated by the upper spectra. Briefly give your reasoning. Hint: calculate the expected C-D couplings and compare to the observed ones before assigning the signals.

The three peaks for C\(^1\) (labelled A, B, C) are separated by 6 Hz. These cannot be due to \(^{3}\text{J}_{\text{CD}}\) since this would be at most 1/6 x 7.4 Hz (if D was meta), or to \(^{2}\text{J}_{\text{CD}}\) if D was ortho (as it actually is) since it would be only 1/6 x 1.0 Hz.

The deuterium seems to be almost entirely at C\(^2\) (this is the only carbon that shows \(^{1}\text{J}_{\text{CD}}\)). The best estimate of the level of labelling at C\(^2\) is probably from the two peaks at C\(^3\) (two-bond isotope shift), (60\% D, 40\% H). There must a significant amount of 2,6-dideutero, to account for peak C at C\(^1\), and very little 2,6-diprotio (structure A), otherwise peak A at C\(^1\) would be taller. Peaks B and C are very weak because they would have long \(T_1\) due to loss of CH DD relaxation, leading to saturation, and possible loss of NOE enhancement.
Problem R-28A \((\text{C}_{23}\text{H}_{26}\text{O}_5)\)

300 MHz \(^1\text{H}\) COSY 2D NMR spectrum in CDCl\(_3\)

512x128 FT'd to 512x512, sinebell-squared apodization symmetrized Source: Wilds/C. Fry

Expansion of aliphatic region
Problem R-10M. Interpret the room temperature 400 MHz 1H NMR spectrum of a difluoropiperidine ammonium salt (D$_2$O solvent, expansions on next page) and determine stereochemistry and conformation (J. Am. Chem. Soc. 2000, 122, 544).

(a) Are the two fluorines cis or trans to each other? Explain briefly.

(b) Add the fluorines to the cyclohexane conformation below, and explain how you arrived at this conformation. Write the chemical shifts next to the protons on carbons 2, 3, and 4 on the structure, and, in parenthesis, the approximate J_{HF} coupling for each proton (δ 0.00, $^3J_{HF} = 0.00$ Hz).

(c) Why are the signals at δ 3.3-5.4 broadened compared to the signals at δ 2-2.7?

5H2: The signals at δ 3.4-3.8 are probably broadened by small unresolved coupling to the N-D. There are also unresolved $^3J_{HH}$ couplings to the equatorial H3 protons.

5H3: There are several unresolved H-H couplings (J_{eq-eq} and J_{eq-ax}) to H2 and H4; also a possible unresolved coupling to 14N - there is an anti relationship between H3 and N, and the N could be undergoing relatively slow quadrupolar relaxation (high symmetry).
Problem R-10M (C_{5}H_{10}ClF_{2}N).

400 MHz 1H NMR spectrum in D$_2$O