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Simple organolithium reagents (MeLi, PhLi, n-BuLi, sec-BuLi, t-BuLi and a few others) are usually made by the
reduction of halides, normally chlorides, with lithium.  The direct reaction of lithium metal with more complex
substrates is difficult. However, several very effective lithium-arene reagents or catalysts (such as 4,4-di-t-
butylbiphenyl) have allowed a much wider range of lithium reagents to be prepared by reduction not only of halides,
but also of sulfides, epoxides, oxetanes, and other ethers.[17]

The principal enabling force in the development of organolithium chemistry is the commercial availability of
inexpensive stable solutions of n-butyllithium.  Many hundreds of functionalized organolithium reagents have
become available by the metalation (Li/H exchange) reaction using n-butyllithium, or the more potent and selective
(but also more expensive and difficult to handle) t-butyllithium and sec-butyllithium.[1, 2]

R-H  +  n-BuLi   6  R-Li  +  n-BuH
The scope of the metalation reaction has been expanded by the use of complexing and chelating reagents such as

hexamethylphosphoric triamide (HMPA), N,N’-dimethylpropyleneurea (DMPU) and tetramethylethylenediamine
(TMEDA)[2g] which increase the rate of metalation and thus extend the range of compounds which can be
deprotonated.  The polar cosolvents can also have substantial effects on the subsequent reactions of the organolithium
reagents, e.g., increasing rates of SN2 reactions, and changing ratios of 1,2- to 1,4-addition.  However, side reactions
such as proton transfers can also be favored by these cosolvents.  A variety of potassium reagents can be prepared
either by use of potassium hydride[6] or the combination of butyllithium and potassium t-butoxide.[11]

Many "-heteroatom substituted organolithium reagents have been used for C-C bond formation, with the
heteroatom then facilitating subsequent transformations.  Among the most widely used are metalated sulfones[19] and
dithianes.[8]  These and many others (such as thiazolium salts[16] and homoenolates[9]) have been used as reagents for
umpolung of carbonyl reactivity (acyl anion equivalents[8]).  These reagents often have both nucleophilic as well as
electrophilic character at the metalated carbon.[20]

While the metalation reaction often provides the cheapest route to a lithium reagent,[1, 2] many cannot be made this
way either because the metalation process is too slow (i.e., proton not sufficiently acidic), or not sufficiently selective. 
In these situations the lithium/metalloid exchange reactions may provide the best route.[3]

RM  +  n-BuLi   6  R-Li  +  n-BuM
The Li/Br, Li/I, Li/Sn and Li/Se are the transmetalations most commonly used.  The Li/M exchanges are

extremely fast (especially Li/I, Li/Hg and Li/Te) and have been used to prepare unstable lithium reagents at very low
temperature, and to generate lithium reagents in the presence of electrophiles.[3a, 3e]  The Li/Sn exchange is the most
generally applicable since the trialkylstannane precursors undergo few side reactions during the reaction with the
alkyllithium reagent and the byproducts (n-BuSnR3) are inert.  One disadvantage is the relatively high sensitivity to
steric effects of the Li/Sn exchanges, which can become quite slow, especially in solvents less polar than THF (e.g.,
diethyl ether). Another is the toxicity of organotin compounds.

Organolithium reagents can also be prepared by additions of RLi to multiple bonds[10] and by modified Shapiro
reactions.[15]

There has been substantial progress in the development of processes for the preparation of chiral and
diastereomerically enriched organolithium reagents.[18]

The easy availability of n-butyllithium provides routine access to another class of strong bases, the lithium
dialkylamides (LiNR2), of which lithium diisopropylamide (LDA) is the most widely used.  Others having more or
less steric hindrance, or basicity, or the potential for asymmetric deprotonations have been prepared by varying the R
groups (e.g., isopropylcyclohexylamide, dicyclohexylamide, bistrimethylsilylamide (LiHMDS), 2,2,6,6-
tetramethylpiperidine, (LiTMP)).  The reactivity and selectivity of amide bases can be fine-tuned by use of other
counter ions (e.g., Na+, K+, XMg+, R2Al+) and by solvent effects.

The hindered amide bases such as LDA show a much greater selectivity for proton abstraction vs. nucleophilic
addition, and thus are often preferred over n-butyllithium for the deprotonation of compounds which are susceptible
to nucleophilic attack (carbonyl compounds, nitriles, sulfones, sulfoxides, phosphonates, or any compound containing
3rd, 4th or 5th row elements, olefinic or polyunsaturated substrates).  For those compounds which can be deprotonated
by either LDA or n-butyllithium, the amide bases usually react more rapidly and cleanly.

Lithium diisopropylamide and related bases have made routinely available solutions of regioisomerically pure
lithium enolates derived from ketones, some aldehydes, carboxylic acids, esters, lactones, amides and lactams.  Many
di- and tri-anions have also been prepared.[4]  Hence many alkylations, acylations and other reactions of enolates



previously impossible can be routinely carried out. 
 Many metalations and other organometallic reactions can be carried out in the presence of electrophilic species

such as Me3SiCl, BF3@OEt2, HgCl2, B(OMe)3, etc.  This technique can provide substantial improvements in selectivity
and rate.[1d]

New reagents for the derivatization of lithium and other organometallic reagents with nitrogen, oxygen, halogen
and other heteroatom electrophiles[10] continue to be developed.  Weinreb reagents (N-methoxy-N-methylamides)
provide an effective method for acylation of carbanionic reagents.[10d]

The conversion of lithium reagents to other organometallic species has made possible many useful synthetic
transformations.  Copper reagents promote the conjugate addition of carbanionic centers to ",$-unsaturated carbonyl
compounds.[5]  Although lithium reagents generally add 1,2- (as opposed to 1,4-) to conjugated carbonyl compounds,
some control over regioselectivity has been achieved.[10c]  Cerium reagents often give superior yields of addition
products to ketones (they cause less enolization, and tend to promote 1,2-addition).[14]

The Grignard reaction continues to be studied.[12]
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